

JAVA GUI BUNDLE
A Complete Guides for Programming
Practices

Politeknik Kuala Terengganu

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage or retrieval system, without prior written
permission from the publisher, Politeknik Kuala Terengganu.

Author:

Suhaila Binti Mohd Zain

Published by:

Politeknik Kuala Terengganu
20200 Jalan Sultan Ismail
Kuala Terengganu, Terengganu

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Suhaila Mohd. Zain, 1979-
JAVA GUI BUNDLE : A COMPLETE GUIDES FOR PROGRAMMING
PRACTICES / SUHAILA BINTI MOHD ZAIN.
Mode of access: Internet
eISBN 978-967-2240-36-5
1. Java (Computer program language).
2. Object-oriented programming languages.
3. Programming languages (Electronic computers).
4. Government publications--Malaysia.
5. Electronic books.
I. Title.

005.133 i

Table of Content
Introduction iii

Section 1 Revise of Object Oriented Programming

 CLASSES AND OBJECT 2

 INHERITANCE 4

 POLYMORPHISM 6

 INTERFACE 7

 MULTITHREADING CONCEPTS 8

 REMINDER OF DATA TYPES 9

Section 2 Short Notes to Java GUI

 BASIC GUI IN JAVA PROGRAMMING 12

 EVENT HANDLING CONCEPTS 31

 DATABASE AND GUI 37

Section 3 Simple Questions

 EXERCISE ON BASIC JAVA PROGRAMMING 44

 EXERCISE INPUT OUTPUT STREAM PROGRAMMING 47

 EXERCISE INTRODUCTION TO OOP 50

Section 4 Activities

 INTRODUCTION TO GUI 58

 MORE ON GUI 66

ii

Introduction

Icon Description
This icon is used to highlight and give ideas of related
terms and concept discussed

This icon is to express that the exercise will have
short discussion.

This icon is to indicate that the text is a java codes.

This icon is to indicate a reminder for alert the reader

This icon is to indicate a sample answer for a given
problem.

This icon is to indicate a check list or steps or guides
for given problem.

The aims of this book is for readers to apply object oriented approach and get
programming skills in Java application.This book start with the concepts of
object oriented programming. The concept is then applied to create GUI in
Java programming. It then addresses on the creation of GUIs through
standalone front-end applications. This book has four main section, which
focus on the AWT and Swing library for GUI, then continued with event
handling and finally with database knowledge in the development of an
application. Upon completion the contents of this book, readers are able to
design, code, test, and debug at intermediate level.
The content flow is arranged from basic to more advanced skill. However it
can be skipped according to readers level and skills. The IDE used in
executing codes in this book is NetBeans IDE 8.0.2 with jdk1.8.0_121.
Hopefully this book will assit the readers in the process of learning and
gaining skills for Java programming and project development.

Convention used:
The following are specific notes for iconic symbols used in this book.

Notices:
Images used is free source modified from the Internet and Freepik. The
originals are solely held by their owner.

Discussion

iii

Introduction

Acknowledgement:

The task for completing this book has get attention from the Politeknik Kuala
Terengganu management. Their support, guide and advice for finishing “JAVA
GUI BUNDLE, A COMPLETE GUIDES FOR PROGRAMMING PRACTICES”
really has made the task smooth and easy. The opportunity to write this book
not only for achieving the organization mission, but also to increase the
writers’ knowledge.

Thanks again to all the members involved, without them, this book would not
have been successfully completed.

Suhaila Binti Mohd Zain

iv

1

 CLASSES AND OBJECT

 INHERITANCE

 POLYMORPHISM

 INTERFACE

MULTITHREADING CONCEPTS

 REMINDER OF DATA TYPES

Section 1
Revise of Object Oriented
Programming

2

Classes and Object

Java is a powerful general purpose programming language that has
been around for over 23 years now since its inception in 1996. The
Java Programming environment consists of :

1.Java Language — used by programmers to write the application
2.The Java Virtual Machine (JVM) — used to execute the
application
3.The Java Ecosystem — provides additional value to the
developers using the programming language

The features of Java is summarize in the following diagram.

It is class-based and object-oriented in nature.

Simple

Secured

Platform
Independant

Robust Portable

Architecture
Neutral

Dynamic

Interpreted

Multithreaded

Distributed
High

Performance

Java
Features

Object
Oriented

1

2

3

4

5 6

7

8

9

10

11

12

Classes and Object

02

Class
Scanner

01

Package
java.util.*

Is a group of
similar types of

classes, interfaces
and sub-packages

03

Object

Scanner s = new Scanner
(System.in);

All object must be
instantiated and is
identified with new

keyword

Fundamental of Java language is it consist of classes stored in a package.

Where is the best place to define an object? Consider you
have nested class and methods.

Example

3

Discussion

Inheritance

public class A{ …..
}
public class B extends A{ …..
}

Single Inheritance

public class A{ ….. }
public class B extends A{ ….. }
public class C extends B{ ….. }

Multi Level Inheritance

public class A{ ….. }
public class B extends A{ ….. }
public class C extends A{ ….. }

Hierarchical Inheritance

Inheritance is denoted by keyword extends. There are various types of
inheritance as demonstrated below:

Java does not support multiple inheritance.

4

Inheritance

super can be
used to refer

immediate parent
class instance

variable

Super can be
used to invoke

immediate
parent class

method

super() can be
used to invoke

immediate
parent class
constructor

Usage of super keyword in inheritance context

Refer to current
class variable

Refer to current
class method

This is an
argument in the
method call or in
the constructor

call

Usage of this keyword

5

Polymorphism

Polymorphism in Java is the ability of an object to take many
forms. To put it simply, polymorphism in Java allows us to perform
the same action in many different ways. Polymorphism is denoted by
keyword implements

Women
Mother

Teacher

is a

is a

Explain method overloading and method overriding?

Method overloading Method overriding

Having multiple methods with
same name but with different
signature (number, type and
order of parameters)

When a subclass contains a
method with the same name and
signature as in the super class

Method overriding is applied to use many interface

6

Interface

Difference between Class and Interface in Java

An interface is a blueprint or template of a class. It is much similar
to the Java class but the only difference is that it has abstract
methods (there is no method body inside these abstract methods)
and static constants.

The class that implements the interface should be abstract,
otherwise, we need to define all the methods of the interface in the
class.

Class Interface

Class can instantiate variable and
create object

Interface can not instantiate
variable and create object

Class can contain concrete
methods

The interface can not contain
concrete methods

The access specifier used with
classes are private, protected
and public

In interface only one public
specifier is used

public interface ActionListener extends
EventListener
{

public abstract void actionPerformed(A
ctionEvent e);
}

class Task implements Runnable {
@Override

public void run() {
for (int i = 0; i < 10; i++) {

System.out.println("Running Task");
// Other statements task go here

}
}

}

Example ActionListener interface

7

Multithreading Concepts

Any application can have multiple processes (instances). Each of
this process can be assigned either as a single thread or multiple
threads.

Multithreading in Java is a process of executing two or more
threads simultaneously to maximum utilization of CPU.
Multithreaded applications execute two or more threads run
concurrently. Hence, it is also known as Concurrency in Java.

A single-thread program has a single entry point (the main()
method) and a single exit point. A multi-thread program has an
initial entry point (the main() method), followed by many entry and
exit points, which are run concurrently with the main(). The term
"concurrency" refers to doing multiple tasks at the same time.

In GUI applications, multithreading is essential in providing a
responsive user interface.

The SwingUtilities.invokeLater() method is an extremely important
method for writing a Java application that uses multithreading and if
the interface uses Swing.

private static void createGUI() {
JFrame.setDefaultLookAndFeelDecorated(true);
JFrame frame = new JFrame("JMenu Demo");
....

}
public static void main(String[] args) {

javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() {

createGUI();
}

});
}

8

Example SwingUtilities abstract class

Reminder Of Data Types

Data types incorporate storage categories like integers, floating-
point values, strings, characters, etc. Before moving towards the
Java Data types, you must know the types of languages.

There are majorly two types of languages:

The first is statically typed language in which the data type of each
variable has to be defined during the compile time. That is, we have
to declare the type of the variable before we can use it.
Once we declare a variable of a specific data type, then we cannot
change its data type again. However, they can be converted to
other types by using explicit type casting in Java, except boolean.
Some statically typed languages are C, C++, C#, Java, and Scala.

The other is dynamically typed language. In this type of language,
the data types can change with respect to time and the variables
are checked during run-time.
Some dynamically typed languages are Ruby, Python, Erlang, Perl,
VB, and PHP.

https://techvidvan.com/tutorials/data-types-in-java/

9

Primitive Data Types

Character BooleanInteger Floating-Point

char short int float double booleanlong byte

byte[] buffer;
int[][] matrix; //2-Dimensional
int matrix[][][]; // 3-Dimensional
double[] units[][]; //3-Dimensional equivalent to
double[][][] units;
JLabel labels[] = new JLabel[10]; //array of objects

Reminder Of Data Types

Array
Arrays are fixed length homogeneous data types. Arrays store fixed
length different values of same type. Arrays can be of 1-dimensional, 2-
dimensional or multi-dimensional.

Example Declaration of Arrays:

10

Non-Primitive Data Types

Strings

Interfaces

Arrays

Objects

Classes

11

 BASIC GUI IN JAVA
PROGRAMMING

 EVENT HANDLING CONCEPTS

 DATABASE AND GUI

Section 2
Short Notes to Java GUI

01

Container

03

Layout

02

Component

Basic GUI In Java Programming

12

Java GUI component consist of frame, buttons, text fields, combo
boxes and etc.
Each type of GUI defined in a class such as Frame, Button, TextField,
ComboBox etc
Basic package involves are:

java.awt.*;
javax.swing.*

Understand the concepts of:

Container

Component : Biscuits and Cakes
Layout: Arrangement of the biscuits and cakes

Basic GUI In Java Programming

13

GUI Hierarchy – java.awt Package:

BorderLayout
CardLayout
CheckBoxGroup
Color
Event
Font
FlowLayout
FontMetrics
Graphics
GridBagLayout
GridLayout
Image
Insets
Point
Polygon
Rectange
Toolkit
MenuComponent
Component
Component

java.lang.Object

Button
Canvas
Checkbox
Choice
Container
Label
List
ScrollBar
TextComponent

MenuBar
MenuItem

Menu
CheckboxMenuItem

Panel
Window
ScrollPanel

TextArea
TextField

Dialog
Frame

Basic GUI In Java Programming

14

a) Setup a project, and the structure of files, consider good file name
and easy access

b) Then identify the main class. Should it extends from any class?

c) Content of main() method, as wil be an entry point to start the
execution of a program, consider the access and relation to main
class, any object for execution

Creating Java program

constructor()

main(String args[])

Other related class

main class

The setting for
main class
that will be
called in
main()

Starter
program

which will be
looked by
compiler

Additional
class to
handle

exception or
as adapters

Member of
class

declaration

MyApps(String title)

MyApps a = new
MyApps();

class controller extend
WindowAdapter{ }

Button btn1, btn2, btn3;

Basic GUI In Java Programming

15

Steps on creating basic container using Frame
1. Create blank java file
2. Write import statement to use package
3. Write a complete structure file consist of main class, main

method and constructor of main class
4. Set container (Frame) in constructor
5. Create object of main class

The class Frame is a top level window with border and title. It uses
BorderLayout as default layout manager. The class is from
java.awt.Frame

Constructor & Description

1 Frame()
Constructs a new instance of Frame that is initially invisible.

2
Frame(GraphicsConfiguration gc)
Constructs a new, initially invisible Frame with the specified
GraphicsConfiguration.

3 Frame(String title)
Constructs a new, initially invisible Frame object with the specified title.

4
Frame(String title, GraphicsConfiguration gc)
Constructs a new, initially invisible Frame object with the specified title
and a GraphicsConfiguration.

Create FRAME

Basic GUI In Java Programming

16

The Menu class represents pull-down menu component which is deployed
from a menu bar from java.awt.Menu class

Constructor & Description

1 Menu()
Constructs a new menu with an empty label.

2 Menu(String label)
Constructs a new menu with the specified label.

3
Menu(String label, boolean tearOff)
Constructs a new menu with the specified label, indicating whether the
menu can be torn off.

Create MENU

Basic GUI In Java Programming

17

a) Frame
b) Label
c) Button
d) CheckBox.
e) Choice
f) List
g) ScrollPane
h) TextField
i) TextArea

Identify awt Components

Frame

Label

Button

Checkbox

ChoiceTextField

TextArea

List

Basic GUI In Java Programming

18

Example Components Application

public AllAWTcomponents(String str){
super(str);
setLayout(new FlowLayout());
Label lName=new Label("Nama :");
TextField tname=new TextField(20);
Label lSem=new Label("Semester :");
Choice pilihSem = new Choice();
pilihSem.add("1");
pilihSem.add("2");
pilihSem.add("3");
pilihSem.select("1");
Label lAlamat=new Label("Alamat :");
TextArea talamat=new TextArea(5,20);
Label lCourse=new Label("Kursus:");
Checkbox cIPT=new Checkbox("DFP50043");
Checkbox cHCI=new Checkbox("DFP30033");
Label lProgram=new Label("Pilih Program");
List lstProgram=new List(5,false);
String p[]={"DDT","DEP","DEE","DKE"};

Button bSimpan=new Button("SIMPAN");

add(lName);
add(tname);
add(lSem);
add(pilihSem);
add(lAlamat);
add(talamat);
add(lCourse);
add(cIPT);
add(cHCI);
add(lProgram);

for(int i=0; i<p.length; i++) lstProgram.add(p[i]);

add(lstProgram);
add(bSimpan);

}

Basic GUI In Java Programming

19

GUI Hierarchy – javax.swing Package:

AbstractButton
JComboBox
JLabel
JList
JMenuBar
JOptionPane
JPanel
JTextComponent
. . .

javax.swing.JComponent

java.awt.Container
JButton
JMenuItem
JToggleButton

JCheckBoxMenuItem
JMenu
JRadioButtonMenuItem

JCheckBox
JRadioButton

JEditorPane
JTextArea
JTextField

JFormattedTextField
JPasswordField

java.awt.Frame JFrame

Basic GUI In Java Programming

20

a) JFrame
b) JLabel
c) JButton
d) JCheckBox.
e) JRadioButton
f) JList
g) JScrollPane
h) JTextField
i) JTextArea
j) JOptionPane

Identify swing Components

JFrame

JLabel

JButton

JCheckBox

JRadioButton

JTextField

JTextArea

JList

JComboBox

Basic GUI In Java Programming

21

Example Components Application

public AllSwingComponent(String str){
super(str);
setLayout(new FlowLayout());

JLabel lName=new JLabel("Nama :");
JTextField tname=new JTextField(20);
JLabel lSem=new JLabel("Semester :");
JComboBox pilihSem = new JComboBox();
pilihSem.addItem("1");
pilihSem.addItem("2");
pilihSem.addItem("3");
pilihSem.setSelectedIndex(2);

JLabel lAlamat=new JLabel("Alamat :");
JTextArea talamat=new JTextArea(3,20);

JLabel lCourse=new JLabel("Kursus:");
JCheckBox cIPT=new JCheckBox("DFP50043");
JCheckBox cHCI=new JCheckBox("DFP30033");

JLabel lgender=new JLabel("Jantina:");
JRadioButton rbmale = new JRadioButton("Lelaki");
JRadioButton rbfemale = new JRadioButton("Perempuan",true);
ButtonGroup group = new ButtonGroup();
group.add(rbmale); group.add(rbfemale);
JLabel lProgram=new JLabel("Pilih Program");
String p[]={"DDT","DEP","DEE","DKE"};
JList lstProgram=new JList(p);
JButton bSimpan=new JButton("SIMPAN");
add(lName);
add(tname);
add(lgender);
add(rbmale);add(rbfemale);
add(lSem);
add(pilihSem);
add(lAlamat);
add(talamat);
add(lCourse);
add(cIPT);
add(cHCI);
add(lProgram);
add(lstProgram);
add(bSimpan);

}

Basic GUI In Java Programming

22

JOptionPane

JFrame frame = new JFrame("JOptionPane Test");
frame.setSize(400, 400);
frame.setVisible(true);
JOptionPane.showMessageDialog(frame, "Wake up!");
JOptionPane.showMessageDialog(frame, "You are late, please hurry","Urgent message",

JOptionPane.WARNING_MESSAGE);
int result = JOptionPane.showConfirmDialog(null, "Do you want to enter school?");
switch(result) {

case JOptionPane.YES_OPTION:
System.out.println("Yes");

break;
case JOptionPane.NO_OPTION:

System.out.println("No");
break;
case JOptionPane.CANCEL_OPTION:

System.out.println("Cancel");
break;
case JOptionPane.CLOSED_OPTION:

System.out.println("Closed");
break;

}
String name = JOptionPane.showInputDialog(null, "Please enter your name.");
System.out.println(name);
JTextField userField = new JTextField();
JPasswordField passField = new JPasswordField();
String message = "Please enter your user name and password.";
result = JOptionPane.showOptionDialog(frame, new Object[] {message, userField, passField},

"Login", JOptionPane.OK_CANCEL_OPTION, JOptionPane.QUESTION_MESSAGE, null,
null, null);

if (result == JOptionPane.OK_OPTION)
System.out.println(userField.getText() + " " + new String(passField.getPassword()));

The JOptionPane is a subclass of JComponent class which includes static
methods for creating and customizing modal dialog boxes using a simple
code. The JOptionPane is used instead of JDialog to minimize the complexity
of the code. The JOptionPane displays the dialog boxes with one of the four
standard icons (question, information, warning, and error) or the custom
icons specified by the user.

JOptionPane class is used to display four types of dialog boxes.

Basic GUI In Java Programming

23

Relationship of awt and swing package

Component

Container

Panel

Applet

Window

JDialogJFrameJApplet

JWindowDialogFrame

AWT SWING

1.
It is an API used to develop
window-based applications in
Java.

Swing is a graphical user interface
(GUI) and a part of Oracle’s Java
Foundation Classes that are used to
design different applications.

2. Its components are heavy
weighted*. Its components are light weighted*.

3. In Java AWT, the components are
platform dependent.

In Java swing, the components are
independent.

4.
The functionality of JAVA AWT is
less as compared to the Java
swing.

The functionality of the JAVA swing
is higher than AWT.

5. It requires more time for execution. It requires less time for execution.

6. It has less powerful components
compared to the Java swing.

It has more powerful components
than Java AWT.

Basic GUI In Java Programming

24

Layout manager determine the size and position of components within a
container.
The layout manager is responsible for deciding the layout policy and size
of each of its container.

Java Layout Managers are:
FlowLayout
BorderLayout
GridLayout
BoxLayout

Organizes Layout with LayoutManager

Basic GUI In Java Programming

25

Features of the layout are:

Default layout for Panel class
Components are added from left to right
Default alignment is centered
Uses component preferred size

Creating and Setting up FlowLayout

FlowLayout

Method /
Constructor

Purpose

FlowLayout() To construct new flow layout for the frame

After program or
user resizes

Basic GUI In Java Programming

26

Features of the layout are:

Default layout for Frame class
Components added to specific region:

Creating and Setting up BorderLayout

BorderLayout

Method /
Constructor

Purpose

BorderLayout() To construct new border layout for the frame

NORTH

CENTER

W
ES

T

SOUTH
EA

ST

Basic GUI In Java Programming

27

Features of the layout are:

Components are added from left to right and top to bottom
All regions have equal size
The constructor specifies the rows and columns as the following:

Creating and Setting up GridLayout

GridLayout

Method /
Constructor

Purpose

GridLayout(int, int) To construct new grid layout for the frame

rows

columns

Basic GUI In Java Programming

28

The JOptionPane is a subclass of JComponent class which includes
static methods for creating and customizing modal dialog boxes using a
simple code. The JOptionPane is used instead of JDialog to minimize the
complexity of the code. The JOptionPane displays the dialog boxes with
one of the four standard icons (question, information, warning, and
error) or the custom icons specified by the user.

Example creating custom content for dialog

JOptionPane

public static void main(String[] args{
// create a simple jpanel
JPanel panel = new JPanel();
panel.setBackground(Color.BLUE);

JButton btn = new JButton("TEsting");
JButton btn1 = new JButton("TEsting");
JButton btn2 = new JButton("TEsting");
panel.add(btn);panel.add(btn1);panel.add(btn2);

JOptionPane.showMessageDialog(null, panel);

System.exit(0);
}

Basic GUI In Java Programming

29

public static void main(String[] args)
{
final String s = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean eu nulla urna.

Donec sit amet risus nisl, a porta enim. Quisque luctus, ligula eu scelerisque gravida, tellus quam
vestibulum urna, ut aliquet sapien purus sed erat. Pellentesque consequat vehicula magna, eu
aliquam magna interdum porttitor. Class aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos himenaeos. Sed sollicitudin sapien non leo tempus lobortis. Morbi semper
auctor ipsum, a semper quam elementum a. Aliquam eget sem metus.";

final String html1 = "<html><body style='width: ";
final String html2 = "px'>";

Runnable r = new Runnable() {

@Override
public void run() {
JOptionPane.showMessageDialog(

null, new JLabel(html1 + "200" + html2 + s));
JOptionPane.showMessageDialog(

null, new JLabel(html1 + "300" + html2 + s));
}

};
SwingUtilities.invokeLater(r);

}

JOptionPane

Another example creating custom content for dialog

Basic GUI In Java Programming

30

public class TestDialog
{
// *** your image path will be different *****
private static final String IMG_PATH = "src/images/index.jpg";

public static void main(String[] args) {
try {

BufferedImage img = ImageIO.read(new File(IMG_PATH));
ImageIcon icon = new ImageIcon(img);
JLabel label = new JLabel(icon);
JOptionPane.showMessageDialog(null, label);

}catch (IOException e) {
e.printStackTrace();

}
}

}

JOptionPane

Another example creating custom content for dialog

Event Handling Concepts

31

Event as a signal to the program that something has happened.

In the event model, there are three participants:
The event source, the object whose state changes
The event object, encapsulates the state changes in the event
source
The event listener, the object that wants to be notified

The event source is triggered by external user actions, for example:
Example actions: mouse movement, button clicks, keystrokes,
internal program activities (timer)
Example application: java.util.EventObject, event class is
EventObject which creates events instance

Event object deals with special types of event, example classes are:
ActionEvent
MouseEvent
KeyEvent
ItemEvent
WindowEvent

For example a WindowEvent is generated by an instance of the Window
class or its subclass. JButton is not a subclass of Window, therefore, it
cannot generate the WindowEvent. JButton can generate MouseEvent and
ActionEvent.

Event listener are classes that will catch the event object, event listener
are:

ActionListener
ItemListener
MouseListener
KeyListener

Event Handling Concepts

32

The relationship and classes involved are as the following:

Event Object AWTEvent

ListSelectionEvent

ActionEvent

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

InputEvent

PaintEvent

WindowEvent

MouseEvent

KeyEvent

Component which an event is fired or generated are executed as
following:

Source object

Listener Action
Fires an event handles event

Object interested in the event

Component object

Event object Listener object
(XEvent) (XListener)

The diagram below is simplified of Event processing:

Event Handling Concepts

33

import java.awt.event.*;
import javax.swing.*;

class ButtonListener implements ActionListener{

public void actionPerformed(ActionEvent ae){
Toolkit.getDefaultToolkit().beep();

}
}

public class UseActionListener {

public static void main(String[] a) {

JFrame frame = new JFrame("Popup JComboBox");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton source = new JButton("Ring the bell!");
source.addActionListener(new ButtonListener());
frame.add(source, BorderLayout.SOUTH);
source.addActionListener(new ButtonListener());
frame.setSize(300, 200);
frame.setVisible(true);

}
}

Summary Of Listener:

Implements listener in main class

public class Listener1 extends JFrame implements ActionListener{}

Writing a listener as a nested class

Event Handling Concepts

34

import java.awt.event.*;
import javax.swing.*;

public class Listener3 {

public static void main(String[] args) {
JFrame.setDefaultLookAndFeelDecorated(true);
JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton button = new JButton("Select File");

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
JFileChooser fileChooser = new JFileChooser();
int returnVal = fileChooser.showOpenDialog(null);

if (returnVal == JFileChooser.APPROVE_OPTION) {
System.out.println(fileChooser.getSelectedFile().getName());

}
}

});

frame.add(button);
frame.pack();
frame.setVisible(true);

}
}.

Only CLASSES which IMPLEMENTS ActionListener will have
ActionPerformed() method

Writing listener as anonymous class

The three approaches are written depends to the flow of a program

Event Handling Concepts

35

import javax.swing.event.*;
import java.awt.*;
import javax.swing.*;
public class solve extends JFrame implements ListSelectionListener{

JList b,b1,b2;
JLabel l1;

public solve(){
JPanel p =new JPanel();
JLabel l= new JLabel("select your birthday");
l1= new JLabel();

//String array to store weekdays
String month[]= { "January", "February", "March","April", "May", "June", "July", "August",
"September", "October", "November", "December"};

//create a array for months and year
String date[]=new String[31],year[]=new String[31];

//add month number and year to list
for(int i=0;i<31;i++){

date[i]=""+(int)(i+1);
year[i]=""+(int)(2018-i);

}

//create lists
b= new JList(date);
b1= new JList(month);
b2= new JList(year);

//set a selected index
b.setSelectedIndex(2);
b1.setSelectedIndex(1);
b2.setSelectedIndex(2);
l1.setText(b.getSelectedValue()+" "+b1.getSelectedValue()

+" "+b2.getSelectedValue());

Program Discussion:

Program to create a list and add itemListener to it

Event Handling Concepts

36

//add item listener
b.addListSelectionListener(this);
b1.addListSelectionListener(this);
b2.addListSelectionListener(this);

//add list to panel
p.add(l);
p.add(b);
p.add(b1);
p.add(b2);
p.add(l1);

add(p);
setSize(500,600);
show();

}
public static void main(String[] args){

solve s=new solve();
}
public void valueChanged(ListSelectionEvent e){

//set the text of the label to the selected value of lists
l1.setText(b.getSelectedValue()+" "+b1.getSelectedValue()

+" "+b2.getSelectedValue());
}

}

Database and GUI

37

Java Database Connectivity(JDBC) is the Java Application Programming
Interface (API) that manages connecting to a database, issuing queries
and commands, and handling result sets obtained from the database.
These includes all tabular data stored in relational databases such as
Oracle, MySQL, MS Access and many others.
The JDBC architecture consists of two-tier and three-tier processing
models to access a database. They are as described below:

JDBC drivers are client-side adapters (installed on the client machine, not
on the server) that convert requests from Java programs to a protocol that
the DBMS can understand. There are 4 types of JDBC drivers:

Type-1 driver or JDBC-ODBC bridge driver
Type-2 driver or Native-API driver
Type-3 driver or Network Protocol driver
Type-4 driver or Thin driver

JDBC Net pure Java driver(Type 4 driver) is the fastest driver for localhost
and remote connections because it directly interacts with the database by
converting the JDBC calls into vendor-specific protocol calls

Introduction to database connection in Java:

Two-tier processing models

Three-tier processing models

38

Database and GUI

Introduction to database connection in Java:

Interfaces of JDBC API

A list of popular interfaces of JDBC API is given below:

Driver interface
Connection interface
Statement interface
PreparedStatement interface
CallableStatement interface
ResultSet interface
ResultSetMetaData interface
DatabaseMetaData interface
RowSet interface

Database and GUI

39

Example JDBC application

Introduction to database connection in Java:

import java.sql.*;
public class JDBCDemo {

public static void main(String args[]) throws SQLException, ClassNotFoundException
{

String driverClassName = "sun.jdbc.odbc.JdbcOdbcDriver";
String url = "jdbc:odbc:XE";
String username = "scott";
String password = "tiger";
String query = "insert into students values(109, 'bhatt')";

Class.forName(driverClassName); // Load driver class

// Obtain a connection
Connection con = DriverManager.getConnection(url, username, password);

Statement st = con.createStatement(); // Obtain a statement

// Execute the query
int count = st.executeUpdate(query);
System.out.println("number of rows affected by this query= " + count);

con.close(); // Closing the connection
}

} // class

All Java codes related to database (connection, operation,
processing) need to be handled, therefore they must be
throws or catched else there will be error.

Database is not part of Java environment. It is external entity
to Java.

Database and GUI

40

Understanding types of statement interface

Statement interface
PreparedStatement interface
CallableStatement interface

Introduction to database connection in Java:

Statement

PreparedStatement

CallableStatement

Extends

Extends

Provide methods to
execute queries

Dynamically faster
+

Store binary data

Dynamically faster
+

Store binary data
Interface

Statement: It is used for general-purpose access to the database by executing the
static SQL query at runtime. Example:

PreparedStatement: It is used when we need to give input data to the query at runtime
and also if we want to execute SQL statements repeatedly. It is more efficient than a
statement because it involves the pre-compilation of SQL. Example:

CallableStatement: It is used to call stored procedures on the database. It is capable
of accepting runtime parameters. Example:

Statement st = conn.createStatement();
ResultSet rs = st.executeQuery();

String SQL = "Update item SET limit = ? WHERE itemType = ?";
PreparedStatement ps = conn.prepareStatement(SQL);
ResultSet rs = ps.executeQuery();

CallableStatement cs = con.prepareCall("{call SHOW_CUSTOMERS}");
ResultSet rs = cs.executeQuery();

Database and GUI

41

Comparison of Statement Types

Introduction to database connection in Java:

Statement PreparedStatement CallableStatement

It is used to execute
normal SQL queries.

It is used to execute
parameterized or
dynamic SQL queries.

It is used to call the
stored procedures.

It is preferred when a
particular SQL query is to
be executed only once.

It is preferred when a
particular query is to be
executed multiple times.

It is preferred when
the stored
procedures are to be
executed.

You cannot pass the
parameters to SQL query
using this interface.

You can pass the
parameters to SQL query
at run time using this
interface.

You can pass 3 types
of parameters using
this interface. They
are – IN, OUT and IN
OUT.

This interface is mainly
used for DDL statements
like CREATE, ALTER,
DROP etc.

It is used for any
kind of SQL
queries which are to be
executed multiple times.

It is used to execute
stored procedures
and functions.

The performance of this
interface is very low.

The performance of this
interface is better than
the Statement interface
(when used for multiple
execution of same query).

The performance of
this interface is high.

Database and GUI

42

Your project must first have a database driver in library, then to make database connection
the driver is declared to open the connection. Query to database require object Statement
using either executeQuery() or executeUpdate(), its depends whether to modify or not the
database content. The result returned from database is then processed typically using
looping to fetch records row by row.

Summary of database integration in Java program:

JDBC Cycle

DriverManager

Connection Statement ResultSet

0. Load database driver

1. getConnection()

2. createStatement() 3(i). SELECT : executeQuery()

3(ii). INSERT/UPDATE/DELETE :
executeUpdate()

4a(i). next()

5. close() 4a(ii). getXXX()

5. close()

Data

5. close()

4b. int

43

 EXERCISE ON BASIC JAVA
PROGRAMMING

 EXERCISE INPUT OUTPUT STREAM
PROGRAMMING

 EXERCISE INTRODUCTION TO OOP

Section 3
Simple Questions

Question 1
Indicate True or False for the following statements

Exercise On Basic Java Programming

44

a. Every element in an array has the same type True/Fals
e

b. The array size is fixed after it is declared True/False

c. The array size is fixed after it is created True/False

d. The element in the array must be of primitive data
type

True/False

Question 2
Which of the following statements is valid array declarations?

a. int i = new int (30);

b. double d[] = new double [30];

c. char [] r = new char(1 . . 3)

d. int i [] = (3 , 4, 3, 2);

e. float f [] = {2.3, 4.5, 5.6 }

f. char [] c = new char();

Question 3.
Choose True or False for the following statements

inputStr = Scan.next()
try{

X= Integer.parseInt(inputStr);
if(X>100){

throw new Exception(“Out of Bound”);
}

}catch(Exception e){
System.out.println(“Cannot convert to int”);

}finally{
System.out.println(“Done”);

}

Exercise On Basic Java Programming

45

1 Throwable is a base class for Exception and Error class True/Fals
e

2 The block statement below are valid:
try{ . . . }

catch(Exception e){ . . .}

True/False

3 The block statement below are valid:
try{ . . . }
try{ . . . }
finally{ . . .}

True/False

4 The block statement below are valid:
try{ . . . }

catch(IOException i){ . . .}
catch(Exception e){ . . .}
finally{ . . .}

True/False

Question 4.
What is the output for the following program if user enters “GOOD DAY”?

Question 1

Exercise On Basic Java Programming

46

a. True

b. False

c. True

d. False

Question 2 a. Invalid

b. Valid

c. Invalid

d. Invalid

e. Valid

f. Invalid

1 True

2 True

3 False

4 True

Question 3

Cannot convert to int
Done

Question 4
The output should be:

Exercise Input Output Stream Programming

47

import java.io.*;
class IntegerInput
{
public static void main (String[] args) throws IOException
{

InputStreamReader inStream = new InputStreamReader(System.in);
BufferedReader stdin = new BufferedReader(inStream);
int n;
System.out.println("Enter 1 or 2 : ");
n=stdin.read();

switch(n){
case 1:

System.out.println("one");
case 2:

System.out.println("two");
default:

System.out.println("not one and two");
}

}
}

Question 1.
Write the following codes and analyze the result, what is the solution if something
wrong or not right fro the output?

Exercise Input Output Stream Programming

48

___________________ // add classes related to program
class IntegerInputSample
{
public static void main (String[] args) throws IOException
{
InputStreamReader inStream = new InputStreamReader(System.in);
BufferedReader stdin = new BufferedReader(_________); // InputStreamReader object
String str;
________________ // declare an int variable
System.out.println("Enter an integer:");
str = stdin.readLine();
_________________ // convert str to integer data type
System.out.println("Integer Value: "+num);

}
}

Question 2
Complete the blank line in program codes based on comment given.
Then write in suitable IDE to see the result.

Question 1

The following is sample output that will be displayed if user enters 1.

Exercise Input Output Stream Programming

49

Question 2

Enter 1 or 2 :
1
not one and two

The program has flaws at switch block. The program will continue running
although it does not agree with the case. To correct the code, one must add
break for each case.

import java.io.*;
class IntegerInput
{
public static void main (String[] args) throws IOException
{
InputStreamReader inStream = new InputStreamReader(System.in);
BufferedReader stdin = new BufferedReader(inStream);
String str;
int num;
System.out.println("Enter an integer:");
str = stdin.readLine();
num = Integer.parseInt(str);
System.out.println("Integer Value: "+num);

}
}

Integer variable defined in the program must be used to assigned value
converted from String type.

Exercise Introduction To OOP

50

QUESTION 1

1. If class A inherits from Class B, which is a superclass? Which is
a subclass?

2. Draw a diagram that shows Class A is inheriting from Class B

3. What are the other name for superclass and subclass?

4. If we have Animal, Insect and Mammal classes, which one will
be a superclass?

5. Model different types of vehicles, using inheritance. Include
Vehicle, Automobile, Motorcycle, Sports Car, Sedan, Bicycle.

Exercise Introduction To OOP

51

1. Graphically represent a Vehicle class and three Vehicle objects named
car1, car2, car3.

2. Suppose the Vehicle class is used in a program that keeps track of vehicle
registration for the Department of Motor Vehicles. What kinds of instance
variables would you define for such Vehicle class?

3. Suppose the following formulas are used to compute the annual vehicle
registration fee

• For cars, the annual fee is 2 percent of its value
• For trucks, the annual fee is 5 percent of its value.

• Define 2 new classes for Car and Truck as subclasses of Vehicle.
Hint: Associate class and instance variables to both Car and Truck to
Vehicle.

QUESTION 2

Exercise Introduction To OOP

52

QUESTION 3

Write the following code and understand the code:

class Book
{
Book(String bname, String aname, int nopages)
{

book_name = bname;
author_name = aname;
no_of_pages = nopages;

}

public static void main(String args[])
{

Book b1 = new Book ("Java 2","Herbert Schildt",100);
}

}

Exercise Introduction To OOP

53

QUESTION 4

Write the following code and understand the code:

public class person {
String name;

int age;
float salary;

public void getData(){
name="suhaila";
age=23;
salary=150;

}
public void displayData(){

System.out.println("Name is "+name+", with age "+age+", "+salary+ " is the salary");

}
public static void main(String[] args) {

person me = new person();
me.getData();
me.displayData();

}
}

What is the meaning of defining person as public class?Discussion

Exercise Introduction To OOP

54

QUESTION 5

Write the following code and understand the code:

What is accessor and mutator in java? Can you apply it for
the program in Question 5?

public class bank_account {
String name;
float actnum;
String acttype;
float actbal;

public void getData(){
name="suhaila";
actnum=233758578;
acttype="saving";
actbal=30000;

}
public void displayData(){

System.out.println("Name: "+name);
System.out.println("Act balance: "+actnum);
System.out.println("Act type: "+acttype);
System.out.println("Act bal: "+ actbal);

}
public static void main(String[] args) {

bank_account me = new bank_account();
me.getData();
me.displayData();

}
}

Discussion

Exercise Introduction To OOP

55

QUESTION 6

Understand the following code :

interface calculator{

public void add(int x, int y);

}

What is the characteristic of an interface?Discussion

Then create calculatorScientific that will implements the interface.

Exercise Introduction To OOP

56

QUESTION 7

Write the following code and understand the code:

public abstract class auto {
private String made;
private double price;

public String getMade() { return made;
}

public double getPrice() { return price;
}

public void setMade(String made) { this.made = made;
}

public abstract double setPrice(double price);
}

public class chevy extends auto {
public double setPrice(double price){ return price;
}

}

public class ford extends auto{
public double setPrice(double price){ return price;
}

}

public class exec {
public static void main(String[] args) {
chevy c = new chevy();
ford f = new ford();

c.setMade("Chevy");
c.setPrice(420000);
f.setMade("Ford");
f.setPrice(230000);

}
}

57

This part consists of laboratory activities for simple

problem solving using graphical user interfaces then

followed by more advanced GUI manipulation. These

activities requires only 20 to 35 minutes to finished.

These exercise will evaluate student understanding

and skills towards the practice set.

Section 4
Activities

 INTRODUCTION TO GUI

MORE ON GUI

Introduction To GUI

58

ACTIVITY 1
1. Create an empty frame by creating object of JFrame class. Set minimum method
so that it can be displayed.

2. Then using another java file, create a frame by inheriting the JFrame class

3. Create multiple objects of JFrame dynamically using array.

Both will produce the same output. What is the difference of both
way of writing frame object?

Discussion

Introduction To GUI

59

ACTIVITY 2

Sample Output:

Write the following codes and run it

import java.awt.*;
import javax.swing.*;

public class ManipulateLabel extends JFrame{
public ManipulateLabel(){

ImageIcon myIcon = new ImageIcon("car.png");
JLabel lbl1 = new JLabel(" This is Example");
JLabel lbl = new JLabel("Drive a car", myIcon, JLabel.CENTER);
lbl.setBackground(Color.green);
lbl.setOpaque(true);
setVisible(true);
setLayout(new FlowLayout());
setSize(400,200);
setTitle("Use Label");
add(lbl);
add(lbl1);

}
public static void main(String[] args) {

ManipulateLabel m = new ManipulateLabel();
}

}

ACTIVITY 3
Write the following codes and run it

import java.awt.*;
import javax.swing.*;

public class obj extends JFrame {
JButton btns[] = new JButton[5];
String teks[] = {"Enter","Exit","Save","Edit","Add"};

public obj(){
setSize(300,400);
setLayout(new FlowLayout());
setTitle("Dynamic components");
setVisible(true);

for(int i=0;i<btns.length;i++){
btns[i] = new JButton();
btns[i].setText(teks[i]);
add(btns[i]);

}

}

public static void main(String[] args) {
obj o = new obj();

}

}

60

Introduction To GUI

Instead of using array to create object, what is another way to
dynamically create object?

Discussion

ACTIVITY 4
Use suitable layout to display the following GUI

61

Introduction To GUI

1. Sketch your layout and label the containers for each
part.

2. Then define the object name
3. Add the objects to its consecutive containers

ACTIVITY 5

Use suitable layout to display spaces with colors as the following:

1. Sketch your layout and label the containers for each
part.

2. Then define the object name
3. Add the object to component

62

Introduction To GUI

ACTIVITY 6
Write a menu which attached a button on it. Display 3 menus with three different
images.

1. Sketch your layout and label the containers for each part.
2. Then define the object name
3. Add the object to component

63

Introduction To GUI

ACTIVITY 7
Creating a JMenu application.

1. Create a blank JFrame
2. Create 3 JMenu object with name Home, Insert and Design
3. Create a JMenuBar object and add to your container
4. Create another 3 JMenuItem (Copy, Pictures, Themes) to

attach for each JMenu object.
5. Add listener to all your menu item object
6. Using anonymous listener, display the respond in a JLabel

for each menu item selected.

64

Introduction To GUI

ACTIVITY 8
Write a menu which attached a button on it. Display 3 menus with three different
images.

1. Based on Before diagram, create the same GUI.
2. Add event handling for JList to listen to the event
3. Display selected item in the text field as shown in After diagram

65

Introduction To GUI

Before

After

ACTIVITY 1
Write a menu (JMenu) based application. Then add menu item (JMenuItem) as the
following diagram, the menu item File 1 clicked will add a button labelled MenuItem
File 1. Same with menu item File 2, will added another button labelled MenuItem
File 2.

1. Create a blank JFrame
2. Create 2 JMenu object for FILE and EDIT
3. Create a JMenuBar object and add to your container
4. Create another 2 JMenuItem for File 1 and File 2 to attach

for each JMenu object
5. Add listener to all your menu item object using anonymous

listener
66

More on GUI

ACTIVITY 2

Write a menu based application using button. Display other frame for each button
action as in diagram.

1. Create a blank JFrame
2. Create 2 JButton for Email and Video
3. Add image icon for each button.
4. Add listener to all your button object using anonymous

listener

67

More on GUI

ACTIVITY 3

The following codes will check keys entered by user. Analyse the codes and
change the result so that it will display in the GUI.

1. Create another text field to display the result
2. Delete all codes to display the result in Window Output

68

More on GUI

import java.awt.event.KeyAdapter;
import java.awt.event.KeyEvent;
import javax.swing.JFrame;
import javax.swing.JTextField;

public class CheckingKeys {
public static void main(String[] argv) throws

Exception {
JTextField text = new JTextField();
text.addKeyListener(new Keychecker());
JFrame frame = new JFrame();
frame.add(text);
frame.setSize(400, 350);
frame.setVisible(true);
}

}
class Keychecker extends KeyAdapter {

@Override
public void keyPressed(KeyEvent event) {
char ch = event.getKeyChar();
System.out.println(event.getKeyChar());
}

}

ACTIVITY 4

The following codes will count the increment of a button click. Complete the codes
to execute. Then add more function to decrement the value.

1. Add all related class using import statement
2. Define all components in the class
3. Finally create standard main method to execute the class

69

More on GUI

public CountButtonClicks(){
setTitle("Click Counter");
setSize(new Dimension(250, 80));
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
JPanel panel = new JPanel();

plus = new JButton("+");
plus.addActionListener(this);
panel.add(plus);

label = new JLabel("" + i);
panel.add(label);
add(panel, BorderLayout.CENTER);

}
@Override
public void actionPerformed(ActionEvent e) {

if (e.getSource() == plus) {
i++;
label.setText("" + i);
}

}

70

Bibliography

Anshuman Singh, & Saxena, A. (2022). JDBC Interview Questions. Retrieved
May 12, 2022, from https://www.interviewbit.com/jdbc-interview-
questions/#fastest-jdbc-driver

Cadenhead, R. (2012). Sams Teach Yourself Java™ in 24 Hours, 6th ed. 800 East 96th Street,
Indianapolis, Indiana, 46240 USA: Sams Publishing.

Etheridge, D. (2009). Java: Graphical User Interfaces, An Introduction to Java Programming:
Ventus Publishing ApS.

Goyal, S. (2019). The Java Programming Environment. Retrieved Feb 20, 2022,
from https://medium.com/javarevisited/the-java-programming-environment-
1bdc7833870e

Horstmann, C. (2007). Java Concepts, 5th Edition: John Wiley & Sons, Inc.

Pramodbablad. (2015). Difference Between Statement Vs
PreparedStatement Vs CallableStatement In Java. Retrieved 23 June, 2022, from
https://javaconceptoftheday.com/statement-vs-preparedstatement-vs-
callablestatement-in-java/

Ralph Morelli, & Wade, R. (2021). Java GUIs- From AWT to Swing. Retrieved
May 20, 2022, from
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_Language
s/Java_Java_Java_-_Object-
Oriented_Programming_(Morelli_and_Walde)/13%3A_Graphical_User_Interfaces/1
3.01%3A_Java_GUIs-_From_AWT_to_Swing#fig-swing2-guis

Rogers Cadenhead, & Lemay, L. (2007). Sams Teach Yourself Java™ 6 in 21 Days, 5th ed. 800
East 96th Street, Indianapolis, Indiana 46240, USA: Sams Publishing.

Spell, B. (2015). Pro Java 8 Programming, 3rd ed: Apress Berkeley, CA.

TechVidvan. (2022). Data Types in Java Programming with Implementation Examples.
Retrieved March 12, 2022, from https://techvidvan.com/tutorials/data-types-in-
java/

	A COMPLETE GUIDE FOR PROGRAMMING PRACTICES-01 (3)
	IPT ebook final_baikisaiz
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Basic GUI In Java Programming
	Event Handling Concepts
	Event Handling Concepts
	Event Handling Concepts
	Event Handling Concepts
	Event Handling Concepts
	Event Handling Concepts
	Database and GUI
	Slide Number 38
	Database and GUI
	Database and GUI
	Database and GUI
	Database and GUI
	Slide Number 43
	Exercise On Basic Java Programming
	Exercise On Basic Java Programming
	Exercise On Basic Java Programming
	Exercise Input Output Stream Programming
	Exercise Input Output Stream Programming
	Exercise Input Output Stream Programming
	Exercise Introduction To OOP
	Exercise Introduction To OOP
	Exercise Introduction To OOP
	Exercise Introduction To OOP
	Exercise Introduction To OOP
	Exercise Introduction To OOP
	Exercise Introduction To OOP
	Slide Number 57
	Introduction To GUI
	Introduction To GUI
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70

	A COMPLETE GUIDE FOR PROGRAMMING PRACTICES-02

