


i | P a g e  
 

QUICK LEARNER : COMPUTER SYSTEM ARCHITECTURE 

 

 

First Published 2022 

e ISBN 978-967-2240-35-8 

Politeknik Kuala Terengganu 

 

All rights reserved. No part of this electronic book may be reproduced or 

transmitted in any form or by any means, electronic or mechanical, including 

photocopying, recording or by any information storage or retrieval system, 

without prior written permission from the publisher, Politeknik Kuala Terengganu. 

 

Published by : 

Politeknik Kuala Terengganu 

20200 Jalan Sultan Ismail, 

Kuala Terengganu, Terengganu 

 
Perpustakaan Negara Malaysia     Cataloguing-in-Publication Data 

Sharmilla Sulong, 1977- 

     Quick Learner : Computer System Architecture / Sharmilla Binti Sulong, 

     Adibah Binti Ali. – Polytechnic Version. 

     Mode of access: Internet 

     eISBN 978-967-2240-35-8 

     1. Computer systems. 

     2. Computer architecture. 

     3. Computer organization. 

     4. Government publications--Malaysia. 

     5. Electronic books. 

     I. Adibah Ali, 1979-. 

     II. Title. 

     004 



ii | P a g e  
 

Abstract 

 

This eBook designed for student to understand the basic concepts on which the 

stored program digital computer is formulated. The content of this eBook is written 

for polytechnic students.  

 

This eBook introduces the basic knowledge of computer architecture and 

computer organization. It focuses on describing of function of each unit in 

Computer System in Chapter 1, applying appropriate method to solve arithmetic 

problem in numbering system and sequential logic circuit in Chapter 2, writing 

assembly program in Chapter 3 and foundation knowledge of Central Processing 

Unit in Chapter 4.   

 

As there already many books written on computer architecture in the market, this 

eBook attempts to distinct itself by using mind mapping to help students visualize 

the concepts easily and practice drill after completing a topic. This allows 

students to better understand the topics they have learned while reinforcing 

existing skills. Therefore, this eBook helps students revise the topics taught in the 

classroom without having to read the notes that long and tedious. 

 

It is hoped that this eBook will help both lecturer and students in making classroom 

learning as enjoyable as possible. This eBook can also be used for independent 

self-learning. 

 

 

 
 
 
 

 



iii | P a g e  
 

 

 

 

 

 

 Ta
bl

e 
of

 
Chapter 1 
The Computer System 1 
Chapter 2 
Number Bases, Logic Gates & Flip Flop 14 

45 
 

Chapter 3 
Assembly Language 

62 Chapter 4 
Central Processing Unit 

72 Answer Scheme 



1 | P a g e

This chapter describes briefly the computer 

system. 



2 | P a g e

Topic : The Computer System 

Introduction 

A computer system is a basic, complete and functional hardware and software 

setup with everything needed to implement computing performance. Computer 

System is a collection of entities (hardware, software and liveware) that are 

designed to receive, process, manage and present information in a meaningful 

format. 

A computer system, therefore, is a computer combined with peripheral 

equipment and software so that it can perform desired functions. The 

components of a computer are designed to interact with one another, and this 

interaction plays an important role in the overall system operation.  

 



3 | P a g e

Block Diagram of Computer System 

 

 

In computer architecture, a bus is a communication system that 

transfers data between components inside a computer, or between computers. 

Computer bus is a subsystem that transfers data between components 

inside a computer, or between computers.  

The bus contains multiple wires with addressing information describing 

the memory location of where the data is sent or retrieved. Each wire in the bus 

carries a bit(s) of information, which means the more wires a bus has, the more 

information it can address. 

The process of 

producing 

results from the 

data for 

getting useful 

information. 

The process of 

entering data 

and programs 

into the 

computer 

system. 

The control unit supervises 

the process of input, output, 

processing and storage. 

The storage operation 

keeps track of files for 

use later. 

The processing operation 

manipulates data 

according to the user’s 

instructions processing  

and storage 

Computer Bus 



4 | P a g e

Types of Bus 

 

 

 

 

 

The most common buses and how they are used with a computer. 

 eSATA and SATA - Computer hard drives and disc drives.

 PCIe - Computer expansion cards and video cards.

 USB - Computer peripherals.

 Thunderbolt- Peripherals connected through a USB-C cable.

An external bus (also referred as 

expansion bus) connects external 

peripherals to the motherboard.  

An internal bus (also referred as system 

bus/local bus) connects all the internal 

components of a computer to the 

motherboard (and thus, the CPU and 

internal memory).  

Describes aspects of how 

the information is being sent, 

and in what manner 

Carries the 

information being 

transmitted 
Containing the memory 

location of where data is 

located in the computer 

memory 

https://www.computerhope.com/jargon/s/sata.htm
https://www.computerhope.com/jargon/s/sata.htm
https://www.computerhope.com/jargon/o/optidisc.htm
https://www.computerhope.com/jargon/p/pciexpre.htm
https://www.computerhope.com/jargon/e/expacard.htm
https://www.computerhope.com/jargon/v/video-card.htm
https://www.computerhope.com/jargon/u/usb.htm
https://www.computerhope.com/jargon/p/peripher.htm
https://www.computerhope.com/jargon/t/thunderbolt.htm
https://www.computerhope.com/jargon/u/usb.htm


5 | P a g e

Cache 

• A special very-high-speed memory called a cache, is used to increase the

speed of processing by making current programs and data available to the

CPU at a rapid rate.

• The transformation of data from main memory to cache memory is called

mapping. The mapping functions are used to map a particular block of

main memory to a particular block of cache. This mapping function is used

to transfer the block from main memory to cache memory.

Type of Cache Memory



6 | P a g e

 Level 1 (L1) cache or Primary Cache

 the fastest memory that is present in a computer system

 The Size of the L1 cache very small comparison to others that is

between 2KB to 64KB, it depends on computer processor.

 It is an embedded register in the computer

microprocessor(CPU).

 The Instructions that are required by the CPU that are firstly

searched in L1 Cache.

 Level 2 (L2) cache or Secondary Cache

 Slower than L1 cache, but bigger in size

 The size of the L2 cache is more capacious than L1 that is 
between 256KB to 512KB.

 L2 cache is Located on computer microprocessor.

 After searching the Instructions in L1 Cache, if not found then it 
searched into L2 cache by computer microprocessor.

 Level 3 (L3) cache or Main Memory

 The L3 cache is larger in size but also slower in speed than L1   
and L2,

 It's size is between 1MB to 8MB.

 In Multicore processors, each core may have separate L1 and   
L2, but all core share a common L3 cache.

 L3 cache double speed than the RAM.



7 | P a g e

Input/Output Module 

I/O module stands for Input/Output module, which is a device that acts as the 

connective bridge between a computer system at one end and an I/O or 

peripheral device of some kind at the other, such as a printer, webcam or 

scanner. 

Input/Output Modules (I/O Modules) act as mediators between the processor 

and the input/output devices. 



8 | P a g e

Generic Model of I/O Module 

• Interface to CPU and Memory via system bus or central switch

• Interface to one or more peripherals devices by tailored data links.



9 | P a g e

Input/Output Device 

An input/output (I/O) device also called as IO Device is a hardware device that 

has the ability to accept inputted, outputted or other processed data. 

IO devices allow the computer system to interact with the outside world by 

moving data into and out of the system. An input device is used to bring data into 

the system. An output device is used to send data out of the system. 

INPUT BOTH OUTPUT 



10 | P a g e

Asynchronous Serial Transfer 

Parallel VS Serial 

 

The processor issues an I/O 

command, continues to 

execute other instruction, 

and is interrupted by the I/O 

module when the latter has 

completed its work. 

The CPU does not 

access a device until it 

needs servicing, and so 

it does not get caught 

up in busy-waits. 

Device can transfer data 

directly to and from memory 

rather than using the CPU as 

an intermediary, and can 

thus relieve congestion on 

the system bus. 



11 | P a g e

Activity 1 

1. Draw a block diagram to illustrate the basic organization of computer system and describe

the functions for each unit.

2. A bus is a communication pathway connecting two or more device. Describe the concept of

interconnection within a computer system as follows :

a. Draw interconnection structures



12 | P a g e

b. Describe the functions for each bus

3. Draw the I/O Module Diagram and explain how it works.

4. Describe the I/O bus and interface modules



13 | P a g e

Activity 2 

Instruction : Answer all questions. 

I/O Module Programming I/O Address Bus Data Bus 

Interrupt Driven I/O Direct Memory Access Control Bus Tags  

i. _________________ carries the information being transmitted.

ii. _________________ identifies where the information is being sent.

iii. _________________ describes aspects of how the information is being sent, and in

what manner.

iv. With _______________, data are exchanged between the processor and the I/O

module.

v. With _______________, the processor issues an I/O command, continues to execute

other instruction, and is interrupted by the I/O module when the latter has

completed its work.

vi. A  ______________ device can transfer data directly to and from memory rather

than using the CPU as an intermediary.

vii. Any program, operation or device that transfers data to or from a computer and

to or from peripheral device is called __________________.

viii. _________________ are used identify where cached data originated.



14 | P a g e

This chapter focuses on the method to solve 

arithmetic problem in numbering system and 

sequence logic circuit.  



15 | P a g e  
 

 

 

Topic : Data Representation 

               

 

 

 

 

 

 

 

 

 

Decimal Binary Octal Hexadecimal 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 

 

Bit 

Nibble 

Byte 

Word 

si
ze

 

1 bit 

4 bit 

16 bit 

8 bit 

Data Representation 

One to One Comparison 

Number 
System 

Binary 

Decimal 

Octal 

Hexadecimal 

Bits  -1 or 0 

0  -  9 

0  -  7 

0 - 9 and 

A -  F 

Data 

Types 
stored 

numbers used in arithmetic 
computations 

letters of the alphabet used 
in data processing 

other discrete symbols 
used for specific purposes 



16 | P a g e  
 

Table : Conversion of Number System 

 

 

 

DECIMAL BINARY OCTAL HEXADECIMAL 

 

 

DECIMAL 

 

 

 Devide by 2 Devide by 8 Devide by 16 

BINARY 

 

Multiply 

each bit by 

2n 

 

-Group bit in  

  3’s, starting  

  on right. 

-Convert to  

  octal digit. 

-Group bit in  

  4’s, starting  

  on right. 

-Convert to     

  hexa digit. 

 

 

OCTAL 

 

 

 

Multiply 

each bit by 

8n 

 

-Convert each 

octal digit to a 

3-bit 

equivalent 

binary 

representation. 

 

-Use a binary  

as an 

intermediary 

HEXADECIMAL 

Multiply 

each bit by 

16n 

 

-Convert each 

hexa digit to a 

4-bit 

equivalent 

binary 

representation. 

-Use a binary 

as an 

intermediary 

 

 

 

 

 

 

  

From 

To 



17 | P a g e  
 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

CONVERSION OF NUMBER BASES 

 

Convert (0.6875)10 to binary : 

 

 

 

 

 

 

So 0.687510 = 0.10112 

    

0.6875 x 2 = 1.3750 

0.3750 x 2 = 0.7500 

0.7500 x 2 = 1.5000 

0.5000 x 2 = 1.0000 

0.0000 
 
 
 
 
 
 

Convert 17410 to binary: 

 

Division 

by 2 
Quotient Remainder 

174/2 87 0 

87/2 43 1 

43/2 21 1 

21/2 10 1 

10/2 5 0 

5/2 2 1 

2/2 1 0 

1/2 0 1 

So 17410 = 101011102 

 

Convert 179210 to octal : 

 

Division 

By 8 

 

Quotient Remainder 

1792/8      224         0 

224/8      28         0 

28/8      3         4 

3/8      0         3 
0  done.  

So 179210 = 34008 

    

Convert 179210 to hexadecimal 

: 

 

Division         

By 16 

Quotient Remainder 

1792/16      112         0 

112/16      7         0 

7/16      0         7 

0  done.  

So 179210 = 70016 

    

Decimal to Binary, Octal, Hexadecimal 
 



18 | P a g e  
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Convert 1110012 to decimal: 

 

binary 

number: 
1 1 1 0 0 1 

power 

of 2: 
25 24 23 22 21 20 

 

1110012 =  

1⋅25+1⋅24+1⋅23+0⋅22+0⋅21+1⋅20  

= 5710 

 

 

Convert 1110012 to octal: 

 

           111     001  

                         7         1 

 

 

 

So 1110012   =  718  

Octal:    0    1     2     3    4     5     6    7
Binary: 000 001 010 011 100 101 110 111

 

Convert 1110012  to hexadecimal 

 

 

 
 

        0011     1001 

               3              9 

 

So 1110012   =   3916 

Binary to Octal, Decimal and Hexadecimal 
 

 

Convert (101.01)2  to decimal: 

 

1    0 1.     0  1 

                 

22   21 20    2-1  2-2 

4 + 0 +  1 +  0 + 1/22   = 5.25    

 

 

(101.01)2  (5.25)10 

 

 

 

 

 

    

CONVERSION OF NUMBER BASES 

 



19 | P a g e  
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Convert 378 to decimal : 

 

3×81+7×80 = 24+7 = 31 

So 378  = 31 

 

Convert  378 to binary : 

 

 
 

            3                  7 

          011               111 

 

So 378  = 0111112 

    

Octal:    0    1     2     3    4     5     6    7
Binary: 000 001 010 011 100 101 110 111

 

Convert  378 to hexadecimal : 

  

 

 

 

   1.         3                   7 

             011               111 

 

   2.   011111 -> 0001  1111 

                             1         F 

   3.   378 = 1F16 

   

 

Convert  37. 458 to binary : 

 

      3         7      .    4       5 

    011     111       100   101 

 

So 37. 458  = 011111 . 1001012 

    

Octal to Binary, Decimal and Hexadecimal 
 

CONVERSION OF NUMBER BASES 

 



20 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Convert 7DE16 to decimal: 

 

 =  (7 * 162) + (13 * 161) +  

     (14 * 160) 

 

 = (7 * 256) + (13 * 16) +  

     (14 * 1) 

 =  1792 + 208 + 14 

 

 =  2014 

 

So 7DE16  = 2014 

 

Convert  7DE16 to binary : 

 

 

 
 

        7            D            E 

     0111      1101       1110 

 

So 7DE16  = 0111110111102 

    

 

Convert  7DE16 to Octal : 

  

 

  1.        7            D            E 

          0111      1101       1110 

 

   2.     011   111   011  110  

             3       7       3      6 

           

   3.   7DE16 = 37368 

   

 

Convert  7DE. 1A16 to binary : 

 

 

   7         D          E     .     1        A 

0111   1101    1110      0001  1010 

 

So   7DE. 1A16 =  

011111011110 . 000110102 

    

Hexadecimal to Binary, Decimal and Octal 
 

CONVERSION OF NUMBER BASES 

 



21 | P a g e  
 

 

 

  

Example 1 : 

 

+ 6 00000110   

+13 00001101   

+19 00010011   

 

Example 2 : 

 

-   6 11111010 

+13 00001101 

+7 00000111 

 

Example 3 : 

 

+6 00000110 

-13 11110011  

-7 11111001 

 

Example 4 : 

 

-6 11111010 

-13 11110011 

-19 11101101 

 
 

Overflow Example : 
 

+70    0 1000110  -70    1 0111010 

+80    0 1010000  -80    1 0110000 

+150  1 0010110       -150   0 1101010  

 

** An overflow may occur if the two numbers added are both either  

positive or negative. 

 
 

How To Represent Signed Numbers 

 

1’st Complement 

100011002 = -1210 

           11110011  

 
Sign  Addition In 2’s Complement 

 

100011002 =  -1210

Sign bit Magnitude

Sign Magnitude 2nd Complement 

100011002 = -1210 

     11110011  

                    1 + 

     11110100 

 



22 | P a g e

Arithmetic Operation In Different Number Bases 

Binary Addition and Subtraction 

Example : (11110)2 to (10111)2 

Solution: 

Example : subtract (10111) from (1001101) 

Solution: 

Octal Addition and Subtraction 

Example : (136) 8 + (636) 8 

Solution: 

 1  <---- carry 

 1 3 6 

  6 3 6 

 7 7 4 

Example : (765) 8 -  (446) 8 

Solution: 

  5 8+5 

 7 6 5 

 4 4 6 

 3  1  7 

Hexadecimal  Addition and Subtraction 

Example : Add (59F)16 and (E46)16 

Solution: 

 5 9 F 

+ E 4 6

---------

1 3 E 5

F + 6 = (21)10 = (16 x 1) + 5 = 15 

5 + E = (19)10 = (16 x 1) + 3 = 13 

Example :  (3F57A)16 -  (C85E)16 

Solution: 

1  1 

Carry 



23 | P a g e

Binary Coded Decimal (BCD) or 8421 Code 

The binary coded decimal code, abbreviated as BCD, is a method that uses 

binary digits “0” and “1”. ON state represents “1” and OFF state represents “0”. 

Each digit is called a bit. This coding system has been used since the first 

computer. This coding system deals with decimal and binary numbers.  

Each decimal number requires 4 bits to code them. 

BCD is a decimal number with each digit encoded to its binary equivalent. Each 

digit of a decimal is represented by its four-bit binary equivalent (1 to 9). A BCD 

number is not the same as a straight binary number. The primary advantage of 

BCD is the relative ease of converting to and from decimal. 

 a) Convert the number 874
10 

to BCD 8421:

874
10 

= 1000 0111 0100 
BCD8421

b) Convert 0110100000111001
BCD    

to decimal

0110 1000 0011 1001 

6 8 3 9 

0110100000111001
BCD  

= 6839
10

 8    7   4  (decimal) 

   1000 0111 0100  (BCD) 



24 | P a g e  
 

 

Activity 1 

1. Perform arithmetic operations (additional and subtraction) in different number base. 

i) Perform the following additional in the binary number system. 

a) 11011012 + 10102 

 

 

 

 

 

 

 

 

b) 10012 + 1112 

c) 11002 + 1012 

 

 

 

 

 

 

 

 

d) 111112 + 11112 

 

e) 3568 + 1768 

 

 

 

 

 

 

 

 

f) AB8916 + ABCD16 

 

 

 

 

 

 

 

 



25 | P a g e  
 

ii) Perform the following subtractions in the binary number system.  

a) 11012– 1102 

 

 

 

 

 

 

 

 

 

b) 11002 - 1012 

c) 10012 – 112 

 

 

 

 

 

 

 

 

 

d) 100012 - 10112 

 

 

 

 

 

 

 

 

 

 

e) 7268 - 4738 

 

 

 

 

 

 

 

 

 

f) ABCF16 – 6ED16 

 

 



26 | P a g e  
 

2. Convert binary, octal and hexadecimal numbers to different bases and vice-versa. 

i) Convert each of the following binary numbers into its equivalent in the octal and 

hexadecimal. 

a) 11102 

 

 

 

 

 

 

 

 

 

b) 1010110102 

c) 10100010112 

 

 

 

 

 

 

 

 

 

d) 111001001102 

e) 110110102 

 

 

 

 

 

 

 

 

 

f) 111111102 

 

 



27 | P a g e  
 

ii) Convert each of the following octal numbers into its equivalent in the binary number. 

a) 378 

 

 

 

 

 

 

 

 

 

b) 7248 

c) 618 

 

 

 

 

 

 

 

 

 

 

d) 458 

e) 71.458 

 

 

 

 

 

 

 

 

 

 

f) 23.1468 

 

 

 



28 | P a g e  
 

iii) Convert each of the following hexadecimal numbers into its equivalent in the binary 

number.  

a) 1C16 

 

 

 

 

 

 

 

 

 

b) F216 

c) 4516 

 

 

 

 

 

 

 

 

 

d) 8EA16 

e) ABC.1216 f) 47. 5B16 

 

 

 

 

 

 

 

 

 

 

 

 



29 | P a g e

Activity 2 

1. Show the number below to sign magnitude, 1’s complement and 2’s complement.

Number Sign Magnitude 1’s Complement 2’s Complement 

i. + 17

ii. – 45

iii. – 34



30 | P a g e  
 

2. Solve the problem below by using 2nd complement: 

a. 45  - 26 

 

 

 

 

 

 

 

b. -17 + 19 

 

 

 

 

 

 

 

 

c. 7A16 -1516 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 | P a g e

3. Write the following decimal numbers into BCD 8421 code.

i. 2573

ii. 9287



32 | P a g e

Topic : Logic Gates 

Boolean algebra is a mathematical system operating on binary digits or bits 

specifically 0’s and 1’s. They perform several mathematical operations. Digital 

circuits that have one or more inputs, but only one output that can perform 

logical operations are called logic gates. 

 An electronic

circuit with a

single output

and one or

more inputs.

 A table that

summarises all

the possible

input and

output of a

logic gate.



 A form of 

symbolic logic 

which provides 

a mathematical 

procedure for 

manipulating 

logical 

relationships in 

symbolic form. 





33 | P a g e  
 

 

 

Basic Logic Gates 

Type Symbol Boolean Algebra Truth Table 

 

AND 

 
Y = A . B 

Input Output 
A B X 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

 

OR 

 

 

Y = A + B 

Input Output 

A B X 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
 

 

NOT 

 

Y = A 

Input Output 

A X 

0 1 

1 0 
 

 

 

 

 

 

 

 

 

 

 

 



34 | P a g e

Combinational Logic Gates 

Type Symbol Boolean Algebra Truth Table 

NAND 

Y = A + B 

Input Output 

A B X 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

NOR 

Y = A . B 

Input Output 

A B X 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

EX-OR Y = A + B 

Input Output 

A B X 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

EX-NOR Y = A + B 

Input Output 

A B X 

0 0 1 

0 1 0 

1 0 0 

1 1 1 



35 | P a g e

Activity 1 

Exercises 1 - 6 are short answer or design questions. 

1. Differentiate between a gate and a circuit.

2. Notational methods are used for describing the behavior of gates and circuits.

Identify the three of notational methods and describe about the notations.

3. How many input signals can a gate receive and output signals can a gate produce?

4. Give the three notation or representations of a NOT gate.

Activity 2 

Exercises 1- 10, mark the answers True or False : 

1. Logic diagrams and truth tables are equally powerful in expressing

the processing of gates and circuits.

2. Boolean expressions are more powerful than logic diagrams in

expressing the processing of gates and circuits.

3. A NOT gate accepts two inputs.

4. The output value of an AND gate when both inputs are 1 is 1.

5. The AND and OR gates produce opposite results for the same input

6. The output value of an OR gate when both inputs are 1 is 1.

7. The output of an OR gate when one input is 0 and one input is 1 is 0.

8. The output value of an XOR gate is 0 unless both inputs are 1.

9. The Active High gate produces the opposite results of the XOR gate.

10. A gate can be designed to accept more than two inputs.



36 | P a g e

Activity 3 

For Exercises 1 - 12, match the gate with the diagram or description of the operation. 

A. AND

B. OR

C. NOT

D. NAND

E. NOR

F. XOR

1. Inverts its input.

2. Produces a 1 only if all its inputs are 1 and a 0 otherwise.

3. Produces a 0 only if all its inputs are 0 and a 1 otherwise.

4. Produces a 0 only of its inputs are the same and a 1 otherwise.

5. Produces a 0 of all its inputs are all 1 and a 1 otherwise.

6. Produces a 1 if all its inputs are 0 and a 0 otherwise.

7. A X

8. A
X

B

9. A
X

B

10. A
X

B

11. A
X

B

12. A
X

B



37 | P a g e

Activity 4 

1. The diagram shows a logic gate G whose truth table is a shown in the table below.

M N X 

0 0 0 

1 0 0 

0 1 0 

1 1 1 

Answer : ___________________________ 

2. A NOR gate with  input signals M = 01010101 and  N = 011010100 . What is the output

signal of the logic gate.

Answer : ___________________________ 

3. The figure shows a logic gate with inputs P and  Q.

If the input P = 0011010 and the input  Q = 1100011 , what is the output X? 

Answer : ___________________________ 



38 | P a g e

4. The diagram shows a logic gate ,L with input signals A and B.

(i) Name the logic gate L.

………………………………………….. 

(ii) Draw the output signal C in the graph below.



39 | P a g e

Topic : Flip Flop 

Sequential Logic Circuit 

Sequential logic circuit is a memory property circuit and have output that depend on the 

previous output(s) and current inputs. In order to provide the previous input or output a 

memory element is required to be used. Thus a sequential circuit needs memory element. 

Also required clock input. 

In general, a sequential circuit is synchronised by the clock signal (pulse) – synchronised 

circuit. The basic block diagram for a sequential circuit is memory device called flip-flop 

that consist of 2 stable operational states (outputs) Q and 𝑄̅  . Flip-flop is a circuit that has 

two stable states and can be used to store state information. 



40 | P a g e

TYPE LOGIC GATES TRUTH TABLE TIMING DIAGRAM 

NOR 

GATES SR 

FLIP FLOP 

(active 

HIGH) 

S R Operation 

0 0 No Change 

0 1 Reset 

1 0 Set 

1 1 Invalid 

NAND 

GATES SR 

FLIP FLOP 

(active 

LOW) 

S R Operation 

0 0 Invalid 

0 1 Reset 

1 0 Set 

1 1 No Change 

Clocked 

SR Input CLK Output 

S R Q 

0 0 1 Not 

Changing 

0 1 1 0 

1 0 1 1 

1 1 1 invalid 

JK FLIP 

FLOP Input Clock Output 

J K Q 

0 0 1 No 

Changing 

0 1 1 0 

1 0 1 1 

1 1 1 Toggle 

T FLIP 

FLOP Clock T Qx+1 

1 0 Q 

1 1 Q 



41 | P a g e

D FLIP 

FLOP Input Clock Output 

S R Q 

0 0 1 Not 

Changing 

0 1 1 0 

1 0 1 1 

1 1 1 invalid 



42 | P a g e

Activity 1 

1. Draw the logic symbols and develop truth tables of each given flip flop below.

2. 

a) SR (NOR GATE)

b) Clocked SR

c) JK



43 | P a g e

d) T

e) D

1. Draw the timing diagram of JK, Clocked SR, T and D flip-flop

a) JK

b) SR

CLK 

  S 

  R 

 Q 

T 

CLK 

 J 

K 

     Q 



44 | P a g e

c) T

d) D

CLK 

  T 

Q 

 

T 

D

CLK 

 D 
  

Q 

T 

D



45 | P a g e

This chapter describes briefly about assembly 

language 



46 | P a g e

Topic : Assembly Language 

Instruction Set, Machine  And Assembly Language 



47 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Human being (Programmers) 

High level language  

(Basic, Pascal and C) 

Programming instructions in the 

normal English words, very 

friendly to programmers. 

Low level language  

(Machine Language) 

Programming instructions in the 

binary codes, understand 

directly by computer system 

Implemented by  

computer system 

Medium level language  

(Assembly Language) 

Programming instructions in the 

English like abbreviation, still not 

so user friendly. 

COMPILERS 

ASSEMBLER 

Problem 
Oriented 

Language (SQL)

Procedural 
Language (Fortran, 

Cobol, C,C++, Java)

Assembly Language 
(mnemonic)

Machine Language (ACII and EBCDIC)

High Level 

Low Level 

Hierarchy of Programming Language 



48 | P a g e  
 

Basic Information of Microprocessor Motorola 68000 

 

 

 

 

 

 

 

 

 

 

 



49 | P a g e

Instruction and Data Format 

Instruction Format 

Example of instruction statement : 

Label  Operator Source-operand, Destination-operand Comment 

DATA FORMAT 

Byte .B 

Word .W 

Long.L 

HH HH HH HH 

HH HH HH HH 

HH HH HH HH 

Only 1 byte (HH) at LSD side is involved the 

remaining are either unchanged or sign-

extended. 

Only 1 Word (HHHH) at LSD side is involved the 

remaining are either unchanged or sign-extended. 

The whole register bits 1 longword (HHHH HHHH) is 

involved. 

START MOVE.W DO,D1 ;move data in register D0 to D1 

Example: MOVE.B  D0,D1 

Example: MOVE.W  D0,D1 

Example: MOVE.L  D0,D1 

DO 

DO 

DO 



50 | P a g e

Data Types 

Types of Addressing Modes 

Implicit / Implied RTS 

Immediate MOVE.B #$40,D0 

MOVE.W #40,D5 

MOVE.L #$30, D7 

Absolute MOVE.B $7000,D3 

MOVE.L D4,$1234 

Data Register Direct MOVE.L D0,D7 

Address Register Direct MOVE.L A3,A1 

MOVE.L A4,D5 

Address Register Indirect MOVE.L D2,(A0) 

MOVE.W (A3),D7 

Address Register Indirect with 

Predecrement 

MOVE.W –(A6),D0 

Address Register Indirect with 

Postincrement 

MOVE.W (A6)+,D0 



51 | P a g e

Example of Instruction in Various Types of Addressing Modes 

DATA TRANSFER 

Example 1 : 

MOVE.W  #$72,D1 

Before : D1 = $00200500 

After    : D1 = $00200072 

Example 2 : 

MOVE.B  D0,D1 

Before : D1 = $00200500 , D0 = $00002222 

After    : D1 = $00200522 , D0 = $00002222 

Example 3: 

MOVE.B  $3000,D1 

Before : D1 = $00200500 

After    : D1 = $00200532 

Example 4: 

MOVE.W  D6,$4000 

Before: D6 = $AB206541 

After : D6 = $AB206541  

$3000 32 

$3001 43 

$3002 98 

ARITHMETIC AND LOGIC OPERATION 

Example 1 : 

ADD.B D0, D1 

Before : D0 = $00002222 , D1 = $00004444 

After    : D0 = $00002222 , D1 = $00204466 

Example 2 : 

SUB.W  #$80,D3 

Before : D3 = $AB206541 

After    : D3 = $AB2064C1 

Example 3 : 

MULU  #2,D2 

Before : D2 = $AB20FFFF 

After : D2 = $0001FFFE 

Example 4 : 

AND.B  #$3E,D1 

Before : D1 = $12345674 

After : D1 = $12345634 

   74  0111  0100 

   3E  0011  1110&& 

 0011  0100 

 3  4 

Example 5 : 

NOT.B  D1 

Before : D1 = $12345655 

After : D1 = $123456AA 

55  01010101 

 1010 1010 ! 

    A       A 



52 | P a g e  
 

Assembly Program 

 

 

 

 

 

 

 

 

 

 

   

 

 

   

 

  

FORMAT OF WRITING ASSEMBLY PROGRAM 

ORG $1000 - PC Loaded With $1000,  

                      Start executing from here 

  

 

 

 

 

END $1000 - Ending of the program 

 

PROGRAM 

INSTRUCTION 

Example 1 : 

A program that add 25 and 34. 

ORG $1000 

                     MOVE.B #25, D0 

                     MOVE.B #34, D1 

                     ADD.B D0,D1 

END $1000 

Example 2 : 

A program that solve the expression  

! ( 40008 + 101110102 / ACEF16) 

ORG $1000 

MOVE.L #@4000, D0 

MOVE.L #%10111010, D1 

MOVE.L #$ACEF,D2 

DIVU.L  D1,D2 

ADD.L D0,D2  

             NOT.L D2 

END $1000 



53 | P a g e  
 

 

Activity 1 

1. Complete the table below: 

Bits of 

operation 

Data size Postfix Sample 

instruction 

Underline the 

affected Hex Digit 

32 

 

Longword   XXXXXXXX 

16 

 

  MOVE.W XXXX XXXX 

8 

 

 .B  XXXXX XXXX 

 

2. State the value of D1 and D2 after execution for each line 
 

1. MOVE.B #7, D1 D1=?  

2. ADD.B #6, D1 D1=?  

3. MOVE.W #352, D2 D2=?  

4. ADD.W D1,D2 D1=? D2=? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



54 | P a g e  
 

Activity 2 
 

1. Given the value D1=0000CAFE and D2 = FFFF1222 

i. Calculate the value OR.B D2,D1 

 

 

 

 

ii. Calculate the value of NOT.W D2 

 

 

 

 

2. Given the value D1 = ABBBBB12 AND D2=ACCC1251 

i. Calculate the value AND.B D2,D1 

 

 

 

 

ii. Calculate the value MOVE.W D1,D2 

 

 

 

 

3. Given the value, D1 = 0000 FFFE and D2 = ABCD 1234. 

a) Calculate the value of OR.B D2, D1 

 

 

 

b) Calculate the value of ADD.W D2,D1 

 

 



55 | P a g e  
 

Activity 3 

 

1. Identify the type of addressing mode in the following instruction. 

a. MOVE.B #8,D3 

 

 

b. MOVE.W D3,(A1) 

 

 

c. MOVE.W $1900,D2 

 

 

d. MOVE.L D1, D0 

 

 

 

2. Write comment in the below table. 

 

SYNTAX COMMENT 

ORG  $6000  

MOVE.L         #$FFFF 1234, D0  

MOVE.B (A1), D1  

ADD.W D2, D1  

MULU.W #$5D, DO  

NOT.W D2  

RTS  

 

 

 

 

 



56 | P a g e

Activity 4 

D1 = 11223344 D2=AA69B250 

1. State The Value Of Register D1 And D2 When The Instruction Below Is Executed:

i. MOVE.W #$1235,D1

ii. MOVE.B D2,D1

iii. MOVE.B #%10101111,D2

iv. MOVE.W $1000,D1

a. 1000  88

b. 1001  55

v. MOVE.B D2,$1000

vi. MOVE.W #77,D1

vii. MOVE.L #$ABCD1111,D2



57 | P a g e

viii. MOVE.W D1,D2

ix. MOVE.W #@34,D1

x. MOVE.B #$11,D1

2. Calculate the value of the register below after execution :

 D1 = $12122222 

 D2 = $12341515 

i. ADD.B D2,D1

ii. SUB.B D1,D2

iii. ADD.W #@25,D2



58 | P a g e

iv. MULU.B #2,D1

v. MOVE.B D2,D1

vi. ADD.B D1,D2

3. Write an instruction based on statement below :

STATEMENT INSTRUCTION 

Transfer data from register D2 to register 

D3 in long size 

Transfer 101010112 to register D4 in long 

size 

Transfer data from address 5000 to register 

D2 in byte size 

Transfer ABCD16 to register D1 in word 

size. 

Sub a data in data register D1 and D2 in 

word size 

Add a data in address register A1 and D3 

in word size 

Divide a data in register D3 to register D5 

in long size 

Multiply 458 to data in register D1 in word 

size 

Transfer a data from register D1 to register 

D3 and add a data in register D3 to 

register D4 in byte size. 



59 | P a g e

Activity 5 

1. Write a programme using Assemble language to solve the operation below:

a) (BACA16 – 123416) + NOT (ADA16 AND 8716)

b) (10010 AND 2010) + (1010 / A16) + NOT FFFF16 



60 | P a g e  
 

c)          ! ( ( 768 / 10102 ) || ( ABCD16 && 123416) )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Write a program that calculate the area of rectangle  

    

 

 

 

 

 

 

 

 

 

 

 

 

25 cm 

36 cm 



61 | P a g e  
 

3. Write a program that calculate the average of two numbers. The numbers is 56 and 

14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Match the following addressing mode with its instruction sets  examples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Address Register Direct 

Absolute  

Register Indirect 

Data Register Direct 

ADD.W D0, D1 

MOVE.W A2,A3 

MOVE.B D0, (A0) 

Immediate 

MOVE.B $3000,A4 

AND.B #$F0, A3 



62 | P a g e  
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter explains briefly the central 

processing unit. 



63 | P a g e  
 

 

 

Topic : The Central Processing Unit 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



64 | P a g e

Instruction Cycle 

The instruction cycle is the basic operational process of a computer system. It is the 

process by which a computer retrieves a program instruction from its memory, 

determines what actions the instruction describes, and then carries out those actions. 

THREE (3) major phases of Instruction Cycle 



65 | P a g e  
 

Stack 

 A useful feature that is included in the CPU of most computers. 

 A storage device that store information in such a manner that the item stored 

(in) last, is the first item retrieved (out)/LIFO. 

 

Terminologies in stack : 

 

 



66 | P a g e  
 

 

 

CISC VS RISC 

 

 

 

  



67 | P a g e  
 

Reverse Polish Notation  

 

The Polish mathematician Lukasiewicz show that arithmetic expression can be 

represented in prefix notation. This representation often referred to as Polish 

notation; place the operator before the operand. The postfix notation, referred 

to as reverse Polish notation (RPN), places the operator after the operand. 

The reverse Polish notation is in a form suitable for stack manipulation. The 

expression, 

A * B + C * D 

Is written in reverse Polish Notation as, 

AB * CD * + 

Proceeding from left to right, we first add A and B, then add D and 

E. At this point we are left with: 

(A + B)(D + E)C * F + * 

Where (A + B) and (D + E) are each a single number obtained from the sum.The 

two operand for next * are C and (D + E).These two numbers are multiplied and 

the product added to F.The final * cause the multiplications of the two terms. 

Reverse Polish notation, combined with a stack arrangement of register, is the 

most efficient way known for evaluation the arithmetic expression. This 

procedure employed by some electronic calculators and also in some 

computer. 

Reason why, the combination of stack and reverse polish notation is the most 

efficient way 

1.Stack 

Particularly, useful for handling long, complex problem involving chain 

calculation. 

2.Reverse Polish Notation. 

Any arithmetic expression can be expressed in parentheses-free Polish notation. 

Conversion of arithmetic expression into Polish notation is the most efficient 

method for translating arithmetic into machine language instruction.  



68 | P a g e

The procedure consist, 

1. Converting arithmetic expression into its equivalent reverse Polish notation.

2. Reverse Polish Notation.

3. The operand is pushed into the stack in the order in which they appear.

a) The two top most operands in the stack are used for the operation.

b) The stack is popped the result of the operation replace he lower

operand.

Reduced Instruction Set Computer (RISC) 

In the early 1980s, a number of computer designer recommended that computers 

uses fewer instructions with simple constructs, so they can be executed much 

faster within the CPU without having to use memory often. This type of computer 

is classified as reduced instruction set computer or RISC 

The major characteristic of RISC : 

• Relatively few instruction

• Relatively few addressing modes

• Memory access limited to load and store instructions

• All operation done within the register of the CPU

• Fixed-length, easily decoded instruction format

• Single-cycle instruction execution

• Hardwired rather that micro-programmed control.



69 | P a g e  
 

 

Activity 1 

1. Draw and describe block diagram for the major component of CPU 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Name and give a function of each component of A, B and C in Diagram 1 below : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Diagram 1 : Central Processing Unit (CPU) 

A Output 

Device 

B 

C 

Central Processing Unit 

Memory Unit 



70 | P a g e  
 

 

Item Name of component 

 

Function 

 

 

A 

  

 

 

 

B 

  

 

 

 

C 

  

 

 
 

3. Match the following term with the appropriate description below. 

 

  
Stack Pointer 

Register Stack 

Memory Stack 

Push  

Pop 

Insert Item 

Delete Item 

Stack placed as large memory 

Stand can be standalone unit 

Holds address on top of stack 

Decode 

Execute 

Determine the operation to be 

performed 

Executes the instruction 



71 | P a g e  
 

4. Solve the equation and draw the stack using Reverse Polish Notation 

a) 2+3+4 

 

 

 

 

 

b) (2+3)*4 

 

 

 

 

c) 2*(5+2*3) 

 

 

 

 

d) (3+4)*(20-(3*4+2)) 

 

 

 

 

e) 5*(3+4)-(2*(2+2*(1+2))) 

 

 

 

 



72 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 | P a g e  
 

Topic : The Computer System  

Activity 1 

4.  

 
 

• Input: provide instruction or data to the system. In order for a computer to receive the requests and instructions 

of the user, some methods of inputting data and information to the computer are required. 

 

• Output: Needs to display the result to the user and to communicate with the user and display information that is 

being worked on, output device is required 

 

• Storage: Used to store instruction or data. Operation on data requires access for more than one time, so data 

and instruction have to be stored temporarily 

• Control: Control the processing of instructions and the movement of data from one part of the CPU to another.  

• ALU: Where arithmetic and Boolean logical calculations are performed 

 
2. 

 

Control Lines:  

• Used to control the access to and the use of the data and address lines. 

• Typical control lines includes memory write, memory read, I/O write, I/O read, interrupt request and etc. 

 

Address Lines:  

• Used to designate the source or destination of the data on the bus 

• The width of the address bus determines the maximum possible memory capacity of the system. 

 

Data Lines: 

• Provides a path for moving data between system modules 

• Consists of 8,16 or 32 separates lines, the number of lines being transferred to as the width of the bus 

• Each line carry only 1 bit of the time, the number of lines determines how many bits can transferred at a time 

 

 

 

 

 



74 | P a g e  
 

2.  

a. Direct 

 
 Simplest technique 

 Maps each block of the main memory into one possible cache line 

 
b. Associative 

 
 

 Any block of main memory can potentially reside in any cache block position. This is much more flexible 

mapping method. 

 Flexible – higher costs (must search all 128 tag patterns to determine if a given block is in cache. 

 Existing blocks only need to be ejected if cache is full. 
 

c. Set Associative 

 
 

 Blocks of cache are grouped into sets, and the mapping allows a block of main memory to reside in any 

block of a specific set. From the flexibility point of view, it is in between to the other two methods. 

3.  

 
 
 I/O logic: control circuit through which the CPU and external devices communicate. 

 Data registers: intermediate data between the external device and the computer system (e.g. memory, 

CPU). 

 External device interface logic: control circuit through which transfers data and control signals to/from the 

I/O devices from/to the computer system. 



75 | P a g e  
 

4.  

 

 

 It defines the typical link between the processor and several peripherals. The I/O Bus consists of data lines, 

address lines and control lines.  

 The I/O bus from the processor is attached to all peripherals interface. To communicate with a particular 

device, the processor places a device address on address lines. 

 Each Interface decodes the address and control received from the I/O bus, interprets them for peripherals 

and provides signals for the peripheral controller.  

 It is also synchronizes the data flow and supervises the transfer between peripheral and processor. Each 

peripheral has its own controller. For example, the printer controller controls the paper motion, the print 

timing. 

Activity 2 

i. Data Bus 

ii. Address Bus  

iii. Control Bus  

iv. Programming I/O 

v. Interrupt Driven I/O 

vi. Direct Memory access   

vii. Direct Mapping. 

viii. Associative mapping 

ix. I/O Module . 

x. Tags  

 

Topic : Data Representation 

Activity 1 

1. i) a) 11101112 

b) 100002 

c) 100012 

d) 1011102 

e)  5548 

f)  1575616 

 

ii) a) 1112 

b) 1112 

c) 1102 

d) 1102 

e)  2338 

f) A4E216 



76 | P a g e  
 

2. i)  

a. Octal – 16 Hexadecimal - E 

b. Octal – 532 Hexadecimal – 15A 

c. Octal – 1213 Hexadecimal – 28B 

d. Octal – 3446 Hexadecimal – 726 

e. Octal – 332 Hexadecimal – DA 

f.  Octal – 376 Hexadecimal - FE 

 

 

ii)  a) 111112 

b) 1110101002 

c) 100012 

d) 1001012 

e) 111001.1001012 

f) 10011. 0011001102 

 

iii) a) 111002 

b) 111100102 

c) 10001012 

d) 1000111010102 

e) 101010111100 . 00010010 2 

f) 01000111. 01011011 2 

 

Activity 2 

1. 

2. 

a. 45  - 26 

         

 

 

 

 

 

b. -17 + 19 

 

 

 

 

 

 

 

 

 

 

Number Sign Magnitude 1’s Complement 2’s Complement 

i. + 17 00010001 00010001 00010001 

ii. – 45 10101101 11010010 11010011 

iii. – 34 10100010 11011101 11011110 

     45                                - 26 

00101101                 10011010 

                                   11100101 

                                                    1 + 

                                   11100110 

00101101 

11100110 + 

00010011 

     -17                                 19 

10010001                 00010011 

11101110      

                 1 +            11101111                      

11101111                 00010011 + 

                                   00000010 

 



77 | P a g e  
 

c. 7A16 +1516 

 

 

 

 

 

 

 

 

 

 
4.  

i. 2573  

 

 

 

 

 

 

 

ii. 9287 

 

 

 

Topic : Logic Gates 
 

Activity 1 

a. A gate accepts one or more input signals and produces an output signal.  Each type of gate performs one logical 

function.  A circuit is a combination of gates designed to accomplish a more complex logical function. 

 

b. Boolean expressions use the operations of Boolean algebra to describe the behavior of gates and circuits. Logic 

diagrams use a graphical representation to describe the behavior of gates and circuits. Truth tables define the 

behavior of gates and circuits by showing all possible input and output combinations of the gates and circuits. 

 

c. A gate can accept one or more input signals, but can produce only a single output value. 

 

d. A is the input signal and X is the output signal. 

Boolean expression:  X = A' 

Logic Diagram:  

A X

 
 

Truth Table: 

      

A     X 

0       1 

1       0 

NOT takes a binary input value and inverts it. 

 

 

 

 

 

    2          5          7         3 

0010    0101   0111   0011 

2573  = 10010101110011BCD 

    9           2          8        7 

 1001    0010    1000   0111 

 9287  = 1101001010000111 BCD 

 
   7        A                 1       5 

0111 1010            0001    0101 

                               10010101 

                               11101010 

                                             1 + 

                               11101011 

01111010 

11101011 + 

01100101 



78 | P a g e  
 

Activity 2 

1. True 

 

2. False 

 

3. False 

 

4. True 

 

5. False 

 

6. True 

 

7. False 8. False 9. False 10. True 

 

Activity 3 

 
1. C 

 

2. A 

 

3. B 

 

4. F 

 

5. D 

 

6. E 

7. C 

 

8. A 9. B 10. F 11. D 12. E 

    

Activity 4 

1. AND 

2. 1001010102 

3. 11111012 

 

Topic : Flip Flop 

Activity 1 

1. a) SR (NOR GATE) 

 

 
 

 

S  R Q 

0  0 Q0 

0  1 0 

1  0 1 

1  1 Q=Q’=0 

b) Clocked SR 

 

  

CLK S  R Q 

1 0  0 Q=Q’=1 

1 0  1 1 

1 1  0 0 

1 1  1 Q0 

 
c) JK 

 

  

CLK JK Q(t+1) 

1 0  0 Q(t) 

1 0  1 0 

1 1  0 1 

1 1  1 Q(t)’ 

 
 
 
 
 



79 | P a g e  
 

d) T 

 

 

 

CLK T Q(t+1) 

1 0   Q(t) 

1 1   Q(t)’ 

e) D 

 

  

CLK D Q(t+1) 

0 X Q(t) 

1 0  0 

1 1   1 

 

 
2. Draw the timing diagram of JK, Clocked SR, T and D flip-flop    

 

a) JK                                                        

  
 
 
 

 
 
 
 
 
 
 
 

b) S 

 

 

b) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   CLK 
        

S 
        

       R 
 
 
      

      Q 
     

  CLK 

      

       J 

                            

K  

            

 

Q 

     

 

T                                      

 

D 



80 | P a g e  
 

c) T 

 
 
 
 
 
 
 
 
 
 
 
 
 

d) D 

 
 
 
 
 
 
 
 
 

 

Topic : Assembly Language 

Activity 1 

1.  

Bits of operation Data size Postfix Sample instruction Underline the affected Hex Digit 

32 Longword .L MOVE.L XXXXXXXX 

16 Word .W MOVE.W XXXX XXXX 

8 byte .B MOVE.B XXXXX XXXX 

 
2.  

 

1. MOVE.B #7, D1 D1=07  

2. ADD.B #6, D1 D1=0D  

3. MOVE.W #352, D2 D2=0160  

4. ADD.W D1,D2 D1=0D D2=016D 

 

Activity 2 

1. 

   CLK 

      D 

       

Q 

      

     

 

T                                      

 

D 

   CLK 
        

T 
 
 

      Q 
      

     

 

 

 

T                                      

 

D 



81 | P a g e  
 

i.  

     

 

 

 

 

ii.  

 

 

 

 

 

2.  

i.  

 

 

 

 

 

ii.  

 

3.  

i.  

 

 

 

 

 

ii.  

 

 

 

 

 

 

Activity 3 

1.  

a. Immediate addressing  

b. Data indirect addressing 

c. Absolute addressing 

d. Data Direct Addressing 

  F          E 2       2 
1111  1110     0010 0010 
 
11111110 
00100010 || 
11111110 
     F       E    -> D1=0000CAFE 

D2 = FFFF1222 

       1        2        2         2 

    0001 0010 0010  0010 

!   1110 1101 1101  1101 

      E      D         D         D 

D2 = FFFFEDDD 

   5      1            1      2 

0101 0001     0001 0010 

01010001 

00010010 && 

00010000 

1 0 

D1 = ABBBBB10 

D2 = ACCC BB12 

   3      4            F        E 

0011 0100     1111 1110 

00110100     

11111110 || 

11111110 

    F     E 

D1 = 0000FFFE 

 1234 

  FFFE + 

11232 

 

D1=00011232 



82 | P a g e  
 

2.  

 

SYNTAX COMMENT 

ORG $6000 Starting address is 6000 

MOVE.L  #$FFFF 1234, D0 Move FFFF1234 hexa to register D0 in long size 

MOVE.B (A1), D1 Move value in address register A1 indirectly to register D1 in byte size 

ADD.W D2, D1 Add value in D2 to D1 in word size 

MULU.W #$5D, DO Multiply 5D hexa to value in D0 in word size 

NOT.W D2 Not the value in register D2 in word size 

RTS End of statement 

 

Activity 4 

 
1.  

i. D1 = 11221235 

ii. D1 = 11223350 

iii. D2=AA69B2AF 

iv. D1 = 11228855 

v. 1000  50 

vi. D1 = 1122004D 

vii. D2= ABCD1111  

viii. D2=AA693344 

ix. D1 = 1122001C 

x. D1 = 11223311 

 

2. 

 

 
3.  D1 = $12122222    D2 = $12341515 

i. D1=12122237 

ii. D2 =1234150D 

iii. D2 =1234152A 

iv. D1 = 12122244 

v. D1=12122215 

vi.     D2=12341537 

 

Activity 4 
 

1.  

a)  

STATEMENT INSTRUCTION 

Transfer data from register D2 to register D3 in long size MOVE.L D2,D3 

Transfer 101010112 to register D4 in long size MOVE.L #%10101011,D4 

Transfer data from address 5000 to register D2 in byte size MOVE.B $5000,D2 

Transfer ABCD16 to register D1 in word size. MOVE.W #$ABCD,D1 

Sub a data in data register D1 and D2 in word size SUB.W D1,D2 

Add a data in address register A1 and D3 in word size ADD.W A1,D3 

Divide a data in register D3 to register D5 in long size DIVU.L D3,D5 

Multiply 458 to data in register D1 in word size MULU.W #@45,D1 

Transfer a data from register D1 to register D3 and add a data in 

register D3 to register D4 in byte size. 

MOVE.B D1,D3 

ADD.B D3,D4 



83 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

b)  

 

 

 

 

 

 

 

 

 

 

 

 

c)            

 

 

 

 

 

 

 

 

 

 

 

2.  

    

 

 

 

 

3.  

 

 

 

 

 

 

 

ORG $1000 

     MOVE.W #$BACA,D1 

     MOVE.W #$1234,D2 

     SUB.W D1,D2 

     MOVE.W #$ADA,D3 

     MOVE.W #$87,D4 

     AND.W D3,D4 

     NOT.W D4 

     ADD.W D2,D4 

END $1000 

     

 

ORG $1000 

     MOVE.W #100,D1 

     MOVE.W #20,D2 

     AND.W D1,D2 

     MOVE.W #10,D3 

     MOVE.W #$A,D4 

     DIVU.W D3,D4 

     MOVE.W #$FFFF,D5 

     NOT.W D5 

     ADD.W D2,D4 

     ADD.W D4,D5 

END $1000 

     

 

ORG $1000 

     MOVE.W #@76,D1 

     MOVE.W #%1010,D2 

     DIVU.W D1,D2 

     MOVE.W #$ABCD,D3 

     MOVE.W #$1234,D4 

     AND.W D3,D4 

     OR.W D2,D4 

     NOT.W D4 

END $1000 

     

 

ORG $1000 

     MOVE.W #36,D1 

     MOVE.W #25,D2 

     MULU.W D1,D2 

END $1000 

     

 

ORG $1000 

     MOVE.W #56,D1 

     MOVE.W #14,D2 

     MULU.W D1,D2 

     DIVU.W #2,D2 

END $1000 

     

 



84 | P a g e  
 

4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Topic : The Central Processing Unit 

Activity 1 

1.  

 

 

 

 Control Unit: The control unit executes the instructions, sends control signals to and receive control signals from 

devices. 

 ALU: handles arithmetic calculations and performs logical calculations and makes judgement like “if A > B is 

true”. 

 Register: Store data and programs 

2.  

 

Item Name of component Function 

A INPUT DEVICE operation recognizes input from keyboard or mouse. 

B REGISTER SET Store intermediate data used during the execution of the instructions 

C ALU Perform the calculation, sorting and comparison operation 

 

 

 

 

 

 

 

 

 

 

 

 

Address Register Direct 

Absolute  

Register Indirect 

Data Register Direct 

ADD.W D0, D1 

MOVE.W A2,A3 

MOVE.B D0, (A0) 

Immediate 

MOVE.B $3000,A4 

AND.B #$F0, A3 



85 | P a g e  
 

3.  

 

  
Stack Pointer 

Register Stack 

Memory Stack 

Push  

Pop 

Insert Item 

Delete Item 

Stack placed as large memory 

Stand can be standalone unit 

Holds address on top of stack 

Decode 

Execute 

Determine the operation to be performed 

Executes the instruction 



86 | P a g e

4. Solve the equation and draw the stack using Reverse Polish Notation

a) 2+3+4

= 234++

= 9

4 

3 3 7 

2 2 2 2 9 

b) (2+3)*4

= 23+4*

= 20

3 4 

2 2 5 5 20 

c) 2*(5+2*3)

= 2523*+*

= 22

3 

2 2 6 

5 5 5 5 11 

2 2 2 2 2 2 22 

c) (3+4)*(20-(3*4+2))

= 34+2034*2+-*

= 42

4 2 

3 3 12 12 14 

4 2 20 20 20 20 20 20 6 

3 3 7 7 7 7 7 7 7 7 7 42 

e) 5*(3+4)-(2*(2+2*(1+2)))

= 534+*22212+*+*-

=19

2 

1 3 

4 2 2 2 6 

4 3 2 2 2 2 8 

3 3 7 2 20 2 2 2 2 2 16 

5 5 5 5 35 35 7 35 35 35 35 35 35 19 



87 | P a g e

Bibliography : 

David. A. P. &. John. L. H. (2018). Computer Organization and Design The Hardware / 

Software Interface (RISC-V Edition). Book Aid International.(ISBN: 0128122757)  

John. L. H. & David. A. P. (2017). Computer Architecture A Quantitative Approach Sixth 

Edition. Katey Birtcher. (ISBN: 0128119055) © N U R S H A M I N I E B I

Ledin. J. (2020). Modern Computer Architecture and Organization: Learn x86, ARM,and 

RISC-V architectures and the design of smartphones, PCs, and cloud servers 1st Edition, 

Kindle Edition. Packt Publishing. India. (ISBN:1838984399)  

Stallings. W. (2018). Computer Organisation and Architecture Design for Performance 

(11th Edition). United State: Pearson Education. (ISBN:9780134997193)  

Stefano. M. (2020). Architecture Computer. Kindle Edition. Amazon. (ASIN:B08NYX5VF3) 




	cover_ebookQucikDrill (1)
	intro-eBook
	eBook_QuickDrill2022_Master (1)
	cover_ebookQucikDrill_belakang



