FOLiTEI<KNilX

MALAYSIA!
KUALA/TER ENGGANU KEMENTERIAN PENGAJIAN TINGGI

I KOLEJ KOMUNITI
MALAYSIA

PROGRAMMING
FUNDAMENTALS

KEJURUTERAAN ELEKTRIK

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Wan Fazlini Idayu W. Fakari
PROGRAMMING FUNDAMENTALS / WAN FAZLINI IDAYU BINTI W.FAKARI.
Mode of access: Internet
eIlSBN 978-967-2240-28-0
1. Computer programming.
2. Programming languages (Electronic computers).
3. Government publications--Malaysia.
4. Electronic books.
L. Title.
005.13

First Published 2021
© Politeknik Kuala Terengganu
e-ISBN 978-967-2240-27-3

All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic, including
photocopying, recording or by any information storage or
retrieval system, without prior written permission from the
Director of Politeknik Kuala Terengganu

Author :
Wan Fazlini Idayu Binti W.Fakari

Published by :

Politeknik Kuala Terengganu,

Jalan Sultan Ismail,

20200 Kuala Terengganu, Terengganu.
09-6204100

PROGRAMMING
FUNDAMENTALS course
provides the skills necessary
for the effective of
application of computation
and computer programming |
in engineering applications. 3
Students will develop their
programming skills through
a variety of assignments and
labs and by reviewing case
studies and example
programs. The learning
outcome is proficiency in
writing small to medium
programs in a procedt

Ta ble of Introductory to Programming 1

Contents . 1.1 Programming Language
1.2 Types of Programming

1.3 Structure Programming Methodology

1.4 Algorithm, Flow Chart and and
pseudocode

1.5 Algorithm, flowchart and pseudocode

1.6 Algorithm, flowchart, pseudocode and
analyze problem

Fundamentals of C Language 28

2.1 Variables, Constants and Data Types
2.2 Fundamentals of C Programming

2.3 Input, Proses & Output statements
2.4 Hardware & Software operation

Selection Statements 73

3.1 Selection statements
3.2 IF statements

3.3 IF-ELSE statement
3.4 Nested IF statement
3.5 SWITCH statements

Looping Statements 8 8

4.1 Looping statements

4.2 FOR statement

4.3 Nested FOR statement

4.4 WHILE, DO-WHILE loop statements

Function and Array 111

5.1 Function statement

5.2 Function prototype declaration
5.3 Returning function result

5.4 Function call function

5.5 Arrays statement.

5.6 Multidimensional arrays

5.7 1/0O operation

%

AN N\ \ %
N . V/ N A /4//., \ .5
VDN | N / //f n//- r——/f
\ /////////% ..,,%/ 4/ A

Introductory to
Programming

INTRODUCTION

A computer is a machine that can be
programmed to carry out sequences of
arithmetic or logical operations automatically.

Modern computers can perform generic sets of
operations known as programs. These programs
enable computers to perform a wide range of
tasks.

Most of us have used computers in one way
or another. For example, withdrawing money
from the aotomated teller machine (ATM) is a
form of interaction with computer

PROGAMMING

Computer programming is the process of
designing and building an executable computer
program to accomplish a specific computing result W@
or to perform a specific task.

Programming involves tasks such as: analysis,
generating algorithms, profiling algorithms'
accuracy and resource consumption, and the
implementation of algorithms in a chosen
programming language (commonly referred to as 55
coding). Bl e

N
f The process of writing, testing and maintaining

| the source code of the computer program

-_— —

What ?

How to program ?

To solve problems
occurred in life
with the assistance
of computer

e.g.: transaction,
payroll, accounting,
registration,
information exchange
etc.

" 4

Know the programming language

o S S S S U S S S S S S _—
((A set of symbol, word, code or instructions whic

NI what ?

-
|| Method of communication for which computers ||

could understand and execute the instructions | Function?
ll written in source code.

I
)

f
(A programming \
language is
| therefore a |I
| practical way I
for us (humans) ||
| to give
| instructions to I

\a cimputer. J

Tellme 1+ 1isequal
to what???

Background of C programming

C History

Derived from the BCPL language by Martin Richards (1967).

Ken Thompson developed a B language from BCPL language(1970).
Evolved into the C language by Dennis Ritchie (1970) at Bell Telephone Laboratories Inc.
(now the AT & T Bell Laboratories).

C language was first used on a computer Digital Equipment Corporation PDP-11 to fully
use in UNIX operating system.

Why use C?

the portability of the compiler;

the standard library concept;

a powerful and varied repertoire of operators;

an elegant syntax;

ready access to the hardware when needed,;

and the ease with which applications can be optimised by hand-coding isolated
procedures

Cis often called a "Middle Level" programming language. This is not a reflection on its
lack of programming power but more a reflection on its capability to access the system's
low level functions.

Sample of C program

#include <stdio.h>

main()
{
printf("hello, world\n");
return O; -
} i | "DAProgramming C\DebughProgramming C.exe”

hello, world
Press any key to continue

L] I

Examples of C programming

Sample of C program

#include <stdio.h>

int main()

{
printf("Hello\n");
return O;

Sdiflp.EXE

10110101001011010
10100100100100010
10101001010101110
01010010010110101
11101010100111001
10101001010111110
10101101101001001
101010007111 101011

Compile and execute programs.

computer program run through the following steps:

Eldf't : Source code (type the program)
Cnmpile . If no syntax errors = Object Code
v

Link

Rﬁn

Definition and types of programming

Programme
* A set of step-by-step instructions that tells a computer to perform a specific task and to
produce the required results. f Soitane

Bame Help

\

-

* written by the programmer

e Produced through programming Adobe

Cla
Microsoft’ L::J

Office

Score: 0 Time: 6817

Programmer
* A Programmer is a person who , and computer programs.

* Individual that composes instructions for computer systems to refer to when
performing a given action.

TELL ME MORE ABOUT
facebook. YOUR PROGRAMMER.

Programming

* Programming is a process of designing or creating a
program.

* Itis a communication technique to explain the
instructions to the computer.

* Used to produce the program.

Programming Language ;
* a set of conventions in which instructions for the machine are wiitd

* A high-level language used to write computer programs, as COBOL
BASIC, or, sometimes, an assembly language. o -

Understand the term of program, programming,
programmer and programming language

01000110 01110010 01100101 Programming language / coding
01100101 01100011 01101111
v 01100100 01100101 01100011 i
- 01100001 01101101 01110000 S A

i

programming program

programmer

How does your computer understand your code?

* What most programmers write as “code” is a high level
programming language. It is abstract by design.
Abstraction in this context means that we are moving
High Level further away from machine code and programming
languages are closer to spoken languages.

* But a computer can’t understand text based code. It
needs to be compiled (translated) into machine code.

1, 1od ° 1 o 10‘0 : Machine code is a set of instructions which can be
101 0 %013,0, 710 understood by a computer’s central processing unit
0 0 1 0 1 1 0 . .
0110101000110 01 (CPU). Think of the CPU as the brain of a computer,
Low Level Thicic

binary.

What exactly is a programming language?

* Programming languages fall both within the spectrum of low-leve
and high level programming languages, such as JavaScript. '

4
Hello 10101100 [

Programming Language

C language

Table 1 - Software in C language for detection and storage of touches in the sensor file.

#include <stdio.h>
#include <io h>
#include <dos.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

main()

char ch,*txt_File;

MONITOR FOR 6802 1.4 9-14-B0 TSC ASSEMBLER PAGE H

assembly g:: BE 00 70 START cl:: m;‘a::una BEGIN MoNITOR
Language e

On_Screen(bit);
gettime(&t);

sprintf{txt_File,"rat%d. txt" bit),

rat = fopen(txt_File,"a"),
fprintf{rat, "%2d\t %602d\t

%02d\n" t.ti_hour,t.ti_min, t.ti_sec);

fclose(rat);
}

Motorola I.C

* INPUT: none

* QUTFUT: none

* CALLS: none

* DESTROYE: ase A

4013 RESETA EQU #00010011

0011 CTLREG EQU 00010001

Co003 B6 13 INITA LDA A WRESETA RESET ACIA

cOoDS BT 80 04 ETA A ACIA

CO0B 86 11 LDA A WCTLREEG SET B BITS AND 2 STOF
COOA BT 80 04 STA A ACIA

cooD TE CO F1 P SIGRON GO TO START OF MONITOR

int bit;

int data;
FILE *rat,
struct time t;

data=data>>1;
}
H
H

* FUNCTION: INCH - Input character

* INFUT: none

* QUTPUT: char in acc A

* DESTROYS: ace A

- @ mone

* DESCRIFTION: Gets 1 character from terminal

clrser(); On_Screen_ini()
gotoxy(1,1); {
printf{"\n.. RECORDING...\n"); int i
if{kbhit()) getch(); for (i=0;i<8;i++)
{
gotoxy(i*9+1,20);
while (!kbhit()) printf{"cage%d" i),
{ }
outportb (0x378,0xFF); H

On_Screen_ini();
data = inportb (0x378);
for (bit=0;bit<8;bit++)

{
if ((data&1)==0x00)
{ i

On_Screen(int s)

gotoxy(s*9+1,20);
printf{"CAGE%d",s),

CO10 BE 80 04 INCH LDA A ACIA GET STATUS
013 47 ASR A SHIFT RORF FLAG INTO CARRY
014 24 FA BCC INCH RECIEVE MOT READY
C016 BE 80 085 LDA A ACIA+1 GET CHAR
o018 B4 TR RHD A WSTF MASK PARITY
CO1B TE CO 7% THE CUTCH ECHO & RTS
R R AR
* FUNCTION: INHEX - INPUT HEX DIGIT
* INPUT: none
* OQUTPUT: Digit in ace A
* CALLS: INCH
* DESTROYS: acc A
* Returns to monitor Lf not HEX input
CO1E BD W0 INMEX BSR IWCH GET A CHAR
Co020 Bl 30 MF A B'D ZERD
©022 28 11 BMI HEXERR NOT HEX
©024 81 3% e A 0y HINE
CcO026 2F OA BLE HEXRTS GOOD HEX
co28 B1 41 oME A #'A
COZA 2B 09 BT HEXERR NOT HEX
cO2C B1 46 MF A #'F
COZE 2E 05 BGT HEXERR
030 B0 07 SUB A #7 FIX A-F
c03Z B4 OF HEXRTS RAND A #§0F CONMVERT ASCII TO DIGIT
o34 39 BTS

CO3% TE C0 AF HEXERR JMP CTRL RETURN TO CONTROL LOOF

* There are multiple types of programming language. Choosing a suitable one is important.

* The are two categories of language, which are low-level languages and high-level languages.

Lo\N \e

vel language

Low Level Language

Machine Language

Assembly Language

High Level Language

Binary number codes understod by a spesific CPU

Mnemonic codes that correspond to machine
language instructions

Machine-independent programming language that
combines algebraic expressions and english
symbols.

Lowest-level programming language

Second-level of language.

Need translator (compiler) to convert high-level to
low-level

Only understood by computers. Express in binary
form.

Develop tareplace " 0" and ™ 1" used in machine
language

Machine independent language. Can be execute on
any computer

Imposibble for human to use

English-like abbreviations representing elementary
computer operations (translate via assemblers)

English-like words. (eg. If, printf, scanf etc.)

Example:

mm 1ee 110 oMt 1001 1N
oot 1001 1111 1100 101 1100
1 optt 4001 1111 1001 111
1001 1111 1100 0011 1001 1111
1011 1001 1111 4011 1001 111

Example:

STATUS equ 03h
TRISA gqu 85h
PORTA equ 0Sh
COUNT1 gqu 08h
COUNT2 equ 0%h

Example:

#include < stdio.h=
void main()

{
printf),
print"Hello World™);
printfn");

10

Programming Languages

#1: Machine Level Language

* Machine languages are the only Programming languages understood by computers.
While easily understood by computers, machine languages are almost impossible for
human to use because they consist entirely of numbers (binary bitsi.e. 0 or 1).

* Advantages:
* the programs are written in binary form,

* thereis no need of assemblers or compilers to convert the codes to machine
readable form so the execution is fast.

¢ This also leads to smaller file size.

* Disadvantages:
* It is extremely difficult to learn, as program codes are to be written in binary form.

* It is machine dependent so program written on one computer cannot be run on
another computer of the same type.

* As they are machine dependent proper knowledge of CPU.

H BASCOM-8051 Terminal emulator

Fie Temind
ernary 052 version 1.1
D010 f[Location O Grifo(r) ITALIAN TECHNOLOGY
11010011 | [Location 1) Te1.+30 051 892 652 Fax.+30 051 893 661
A http://www.grifo.con http://wm.grifo. it
Data tormernory | 01010011 | [Location 2
) xR PC=FFFF SP=FF A=FF B=FF PSW=FF DPTR=FFFF
00010000 | [Location 3) RB-FF R1-FF R2-FF R3-FF RL=FF R5-FF R6-FF R7=FF
CPU TRREERE =0 2650,2108
61 62 O4 68 10 20 40 80 55 AR 33 01 02 04 08 10 @.U.3.....
Data from memory [Tg7o0110 28 48 88 55 AR 33 B1 B2 B4 B8 18 20 48 88 55 AA
33 61 62 O4 08 10 20 40 80 55 AA 33 01 02 04 08 3..
11101001 18 28 48 88 55 AR 33 81 02 B4 88 10 20 40 80 55 .
AR 33 61 B2 B4 08 10 20 40 88 55 AR 33 01 02 04
Progarmn ooonot111 08 10 20 46 80 55 AA 33 ©1 02 04 08 10 20 40 80
ber: 55 AR 33 81 B2 G4 08 18 20 LB 88 55 AA 33 01 062
counter. Address for 10100110 B4 B8 10 20 40 80 55 AR 33 B1 02 B4 08 10 20 40
. A 80 55 AR 33 61 02 O4 08 10 20 40 80 55 AR 33 01
1011100001 readingwriting | 00010001 62 B4 B8 18 20 40 88 55 AR 33 O1 62 04 08 18 20
data 00711110 | [Location 10) 40 86 55 An 33 01 02 04 08 10 20 40 80 55 AR 33 5
§1 82 B4 B8 10 20 48 86 55 AR 33 61 02 04 88 10 @.U.3.....

COM3 132004 8.1

Programming Languages

#2: Low Level or Assembly Language

* Assembly language is a type of programming language ,which is used to program
computers, microprocessors, microcontrollers, and other (usually) integrated circuits.

* They implement a symbolic representation of the numeric machine codes and other
constants needed to program a particular CPU architecture.

* An assembly language is thus specific to certain physical or virtual computer
architecture. An assembly language programmer must understand the microprocessor’s
unique architecture (such as its registers and instruction).

* Program written in assembly language is converted to binary codes using special
programs called assemblers.

* Inassembly language a mnemonic is a code, usually from 1 to 5 letters, that represent
an operational code (op-code), followed by one or more numbers (the operands).

* Op-code or operation code is between one and three bytes in length and uniquely
defines the function that is performed. It is the data that represents a microprocessor
instruction.

Program header with basic data

4—""//

;Example of a program which generates a sequence of pulses with
ithe frequency of 1KHz. The cutput pin is PO.1.

;Quartz Crystal=12MHz

iVersion: 1.0, Date: 5th of May 2003, Author: John Smith

SMODB253 ;Program is written for 8253 MCU
DSEG iMext segment refers to internal RAM
ORG 20h
) . Varl Ds 1 iByte at location 20h is reserved
Directives STATE BIT Varl.o0 ;Bit "STATE” is assigned an address

\OUTPZJT BIT PL.0O ;Bit “QUTPUTY is assigned an address
CSEG

iNext segment refers to program memory

ORG 0Oh ;Program starts at address 0000h
AJMP START iJump to the lable “START™
ORG 0Bh ;Timer T0 interrupt-vector address
AJMP INTERRUPT ;Jump to the lable “INTERRUPT”

START MOV IE, #82h jInterrupt enabled on Timer TO overflow
MOV THMOD, #01 ;l16-bit Timer

/ MOV THO, #FEh ;Starting value of Timer is FEOCh
MOV TLO, #0Ch
Labels SETE STATE ;Bit “STATE"” is set
\ SETB TRO iTimer TO starts operating

LOOP NOP
SJIMP LOOF ;Program remains in endless loop

INTERRUPT CLE TRO iTimer must be stopped before overflow
MOV THO, #FEh iTimer TO starting value is rewritten
MOV TLO, #0Ch
SETB TRO ;Timer starts recounting
CPL STATE iCurrent state is complemented
MOV C; STATE ;Bit”STATE” is coppied to C bit
MOV OUTFUT, C iC bit is coppied to bit ™OUTFUT”
RETI iReturn from interrupt routine
END

I |
Comments

Instructions
(mnemonics) (operands)

Programming Languages

#2: Low Level or Assembly Language
* Advantages:

* Program written in assembly language are simpler
than program written in machine codes as use of
binary codes to represent operational codes is
replaced by words (mnemonics).

DOOOOOOOO
NNNAANAANN
TMMOODDODENRAN

* Program written for a family of microprocessors
need not be rewritten i.e. machine dependence is
somewhat reduced.

LDa
ISR
DEX
BHE
ISR
cHE
BNE
ELA
PLA
RIS
CHMP
BEQ
BHA
ISR
PLA
INX
STA
BNE
IXA
BEQ
1%
JSR
LDX

OOOOORODOD
ARNNANNNNND

* Less knowledge of CPU architecture compared to
machine level language is required.

* Disadantages:

* Requirement of knowledge of CPU architecture is
not completely eliminated.

* Assembly Languages are to be converted into binary
codes using assemblers so final executable file size is
large compared to machine level ones.

#3: High Level Language

* High level programming languages are those programming language which use normal
everyday word to represent the executable operational codes.

* These types of programming language follow strictly followed rule for writing these
instruction. This rule is known as syntax.

* High level languages are easy to learn as they avoid the need to understand the complex
CPU architecture and also because the commands are in plain understandable English
form.

* These programs written in plain English form following syntax are converted in machine
understandable form using either compilers or interpreters.

* Advantages.
* They are easy to understand and user friendly.
* It reduces the complexity of programming as need of knowledge of CPU architecture is eliminated.

* High level programs are very easy to maintain than machine and lower level languages. In machine and lower
level languages, instructions are difficult and very hard to locate, correct and modify but in high level language,
it is very easy to understand and modify when desired.

* Each high-level language provides a large number of built-in functions or procedures that can be used to
perform specific tasks during designing of new programs. In this way, a large amount of time of programmer is
saved.

* Program written in high-level language is machine independent. It means that a program written on one type
of computer can be executed on another type of computer.

13

Programming Languages

#3: High Level Language
* Advantages.

* They are easy to understand and user friendly.

It reduces the complexity of programming as need of knowledge of CPU architecture is eliminated.

High level programs are very easy to maintain than machine and lower level languages. In machine and lower
level languages, instructions are difficult and very hard to locate, correct and modify but in high level language,
it is very easy to understand and modify when desired.

Each high-level language provides a large number of built-in functions or procedures that can be used to

perform specific tasks during designing of new programs. In this way, a large amount of time of programmer is
saved.

Program written in high-level language is machine independent. It means that a program written on one type
of computer can be executed on another type of computer.

* Disadvantages.

The additional process of compilation needs more machine time than the straight assembly process.
There is no control of hardware part while writing high level programs.

* The programs have to be compiled every time a change is made.

Compiler

Compiled languages are converted directly into machine code that the processor can execute.
As a result, they tend to be faster and more efficient to execute than interpreted languages.

Interpreter

* Interpreters run through a program line by line and execute each command.

* Interpreted languages were once significantly slower than compiled languages.

Source code: _
Machine code:

hello.c

AASAC N F'ZBMH H Ello !
| —= COMPILER —D [nond run the o
e - program

Program (also -

called binary,
executable ...)
Source code:
hello. py

SO o INTERPEETER > (esule Hello!

14

‘r (I:::::)ut::?i:nlyf!!! — .ﬁ\

understands
I|rnadﬁne|anguage.

N —
- = = =

|| So, computer need
translator call:
-Assembler
-Compiler or interpreter.

]
I

Can you even do one thing RIGHT you MORON!
How many more seqfaulis and covedumpls will you give e
Even | have a life!! you are Filling me!!

101001010101
0101010010110
111111010100
1001000010101
01010010111

Do you
speak
assembly?

— =~
I[Assembler:]l
assembly =»machine
I| compiler or interpreter |I
lL high level =»machine ||
—_— e = =
:CLEAR SCREEN USING BIOS
CLR: HOU AX,B606H :SCROLL SCREEN
HOU BH,38 :COLOUR
HOU C%,0660 ;FROH
MOU DX,184FH :T0 24,79
INT 16H :CALL BIOS;
;INPUTTIHE OF A STRING
KEY: HOU AH,BAH ;INPUT REQUEST
LEA DX,BUFFER ;POINT TO BUFFER WHERE STRING STORED
INT 21H :CALL DOS
RET :RETURN FROM SUBROUTINE TO MAIN PROGRAH;
: DISPLAY STRING TO SCREEN
SCR: HOU AH,89 :DISPLAY REQUEST
LEA DX,STRING :POINT TO STRINC
INT 21H :CALL DOS
RET :RETURN FROM THIS SUBROUTINE;
N

gag1e106161181616161616161018181066818
1118111818161 6161616111060161 68616118
ge1@1801010106161111681611101811181818
1ggi1o1eg1011016161018181 0101810116118
g11818610611086161111616111618181060818
geg1aee101011161616816168068161618111818
1818168010101608181611816811181811181811
G06160106161181601616816816816816181810060818

15

P
S
e

Types Of Programming And Structure Programming Methodology

Various software design techniques have been introduce to improve the structure of
programs for better understanding and efficiency. These techniques are as follows:

* Modular programming (MP)
* Structured programming (SP)
* Object-oriented programming (OOP)
The goal of MP, SP and OOP are similar, which is to facilitate the construction of large

software programs and systems by decomposition into smaller pi These pieces are called
subdivisions, modules, units, functions, procedure subroutines or objects.

Modular programming (MP) refers to high-level decomposition of the entire programing
modules. The modules are differentiated by an independent set of tasks or function such
as input/output, mathematical process or domain-specific processes example, a function
to calculate average marks, mode mark, standard deviation or minimal mark.

MP can use Structured programming (SP) approach or Object-oriented programming
(OOP) approach. In SP approach, the modules are functions. In OOP approach, the
modules are objects.

Modular Programming (MP)
|

Structures Programming (SP) Object-oriented Programming (OOP)

Modular programming

Modular programming is a software design technique that increases the extent to which
software is composed of separate, called modules by
breaking down program functions into modules, each of which accomplishes one func_
and contains everything necessary to accomplish this. :

Conceptually, modules represent a separation, and improve mamtamablllty by. ¢t
logical boundaries between components.

e

2

I Main program

I

7_ _data__
//g================= \\
ﬂ module, ! { module,
| data+data, !] data+data,

I

: :: . .
I | I 5 e M
| . procedure; | : 5 ,
\ y i | procedure, |)
S - l ’|

Structured programming

* Structured programming is a programming paradigm/technique aimed on improving
the clarity, quality, and development time of a computer program by making
extensive use of subroutines, block structures and for and while loops.

* Top-down approach.
* The most popular structured programming languages include C,C++, Ada, and Pascal.
* Split the task into modular/specific box to make program much more easier to

develop
program fragments, the first is structured, while the second
Statement 1
Structured: Unstructured:
IF x<=y THEN IF x>y THEN GOTO 2;
! BEGIN z i= y-X;
z 1= y-x; q := SQRT(z);
g :=SQRT(z); GOTO 1;
Statement 2 END 2: z:i= X-y;
ELSE q:=-SQRT(z);
BEGIN 1: writeln(z,q);
l' Z 1= X-Y;
g := -30RT(z)
Statement 3 END;
WRITELN(z,q);

Object-Oriented programming

* Programming techniques may include features such as data abstraction,
encapsulation, messaging, modularity, polymorphism, and inheritance. Many
modern programming languages now support OOP, at least as an option.

* The most popular object-oriented programming languages include Java, Visual Basic,
C#, C++, and Python.

ExarplaProgam

Cibject Everything in OOP is grouped as self

| sustainable "objects"

\

StnngBuftar Terd Qhjes] Gysiem
Object [€ (Sting Object) [Object

sject Format Debug Rum Query Diagrem Tooks Addlns Window Help
M-8-FlEa BHloo|), o NESERA M| 0o 3t 4600x 3600

General
- e
5 ot Fomi o) _ S e
— = 5 Fame
A= & Forml IR = o8 =~ T3 Fom1 (Form)

+ "]

"ihak uses a3 R
classes and $o J e e R [Fomifom]
nbgacts® Chjecl Appabetc | catsoried | 3

‘ Parrerstie. 2 - Srable. =
(Capeion
Retmajets et dlayes
S!,I slem il o
i Form Layout
\—) Texi2 QObjecs Object »

StiingBuffar
dibject

y

Comparison between Structured Programming and Object-Oriented Programming

Structured Programming Object Oriented Programming

Algorithm, Flow Chart and and pseudocode

Algoritm In Programming

Definition: an algorithm is a step-by-step procedure to solve a given
problem.

An algorithm gives a solution to a particular problem as a well defined
set of steps.

Design

A recipe in a cookbook is a good example of an algorithm. When a
computer is used for solving a particular problem, the steps to the
solution should be communicated to the computer.

An algorithm is executed in a computer by combining lot of elementary
operations such as additions and subtractions to perform more
complex mathematical operations.

Define the algoritm in programming

* Let's say that you have a friend arriving at the airport, and your friend needs
to get from the airport to your house. Here are four different algorithms that
you might give your friend for getting to your home:

* The taxi algorithm:
* Go to the taxi stand.
* Getin a taxi.
* Give the driver my address.

* The call-me algorithm:
* When your plane arrives, call my cell phone.
* Meet me outside.
* I'll take u to my home!!

* The rent-a-car algorithm:
* Take the shuttle to the rental car place.
* Rentacar.
* Follow the directions to get to my house.

* The bus algorithm:
* Qutside baggage claim, catch bus number 70.
* Transfer to bus 14 on Main Street.
* Get off on Elm street.
* Walk two blocks north to my house.

* In computer programming, there are often manyd
algorithms -- to accomplish any given task.

* Each algorithm has advantages and disadvantages iri;d"ifv'
situations. SRR U

19

Algorithms

m
x
°
o
7o
3
o
=
-~

Algorithm to add two humbers in C:
1) Start Program to add two numbers in C:

/*Program to add two numbers in C.

2) Accept Number one

Programmer: Harsh Shah, Date: 29/6/13*/

3) Accept Number two #include<stdiohs

#include<conio.h>
4) Add both the numbers

void main(){
5) Print the result.

int one, two, add; //declaring Variables
6) End

printf("Enter first number -),

scanf(*%d" &one); //Accepting Number one

printf("Enter second number - 7);

scanf(*%d". &two). //Accepting Number two

add = one + two; //Adding both of them

printf("The addition of numbers %d and %d is %d".one.two.add); //Printing the Result
getch();

1

Write an algorithm to add two numbers entered by user.

Start

Declare variables numl, num2 and sum.

Read values numl and num2.

Add numl and num2 and assign the result to sum.

sumenuml+num?
Display sum
Stop

. Declare variables a,b and c.
: Read variables a,b and c.
: If ab
If axc
Display a i largest number.
Else
Display c i largest number.
Else
If bxc

Display b i largest number.

greatest number.

There are two algorithm representations:
(a) Psesedocode — An English-like list of instructions.

(b) Flow chart — Graphical notation for easy reading.

Pseudocode In Programming

* Pseudocode is one of the methods that could be used to represent an algorithm. It is not
written in a specific syntax that is used by a programming language and therefore cannot
be executed in a computer.

* There are lots of formats used for writing pseudocode and most of them borrow some of
the structures from popular programming languages such as C, Lisp, FORTRAN, etc.

Pseudocode in C programming Adding 2 numbers
Initialize total to zero

Initialize numberl

Initialize number2

Input numberl

Input number2

Add numberl and number2 = total

N o v A w N R

Display the result.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

WO 00 =y O bt R W —

Set the class average to the total divided by ten
Print the class average

o

Fig. 3.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the class average
problem.

Flow chart In Programming

Graphic representation of algorithm which is consist of geometric symbols.

Symbols are connected by line of arrows called flow lines which indicate the direction of

flow of processes or activities.

The shape of the symbol indicates the type of operation that is to occur.

Flowchart should flow from the top of the page to the bottom. The symbols used in

flowchart are standardized.

Terminal

Terminal

Input / Output

Process

Annotation

O Connector

Decision

— Flow Line

Marks the beginning of a program

Marks the ending of a program

To enter data or to display data

A set of instructions to transform input into output

To put comments or additional information

Entry point or exit point to another part of the flow
chart

Condition determining which of two separate paths
to follow

Connector between flow chart nodes indicating
sequence of the steps. The arrow head indicates the
sequence direction

The Advantages And Disadvantages Of Flow chart

Clear: It graphically shows the logic of
an algorithm. It is easier to visualizea
flow chart than to read code. One can

analyse a flow chart like reading a map.

It is easy to analyse bad relationships
between components or to detect a
logical path that is not complete.

Standard notation: The notations are
standard, and are therefore easy to
recognize by a wider audience. Flow
charts include standard notations for
selection structures and looping
structures.

Logical accuracy: Flow charts provide a
positive constraint to the programmer
who drafts the algorithm, ensuring an
algorithm is defined using only a
specific set of notations. This way, it is
not possible to accidentally include a
design that cannot be implemented as
code. Furthermore, using notation
forces one to analyse the solution
instead of stopping at a basic or
abstract level, since it is not possible to
represent an abstract step in notation.

Clumsy: One has to be familiar with
the notations, and drawing notations
require some effort to produce.

Complex drawing: A flow chart may
take up a big drawing space. It's
important to be aware of the space
utilized for drawing the notations.
Otherwise, the drawing may become
clumsy and complex.

Challenging to translate: Flow charts
may not be as convenient as
pseudocode when being translated to
corresponding programming code. This
is because a flow chart is in drawing
form while a pseudocode's form is
closer to actual programming code.

Construct flowchart for the given problem.

Algorithm and flow chart to read the name and print the name.
Algorithm Flow Chart

Step 1: Start
Step 2 : Read input name Sta_rt

Step 3 : Printname
Step 4 : Stop

/ Read Name /
/ Print Name /

Stop

y

Algorithm and flow chart to add two numbers.
Algorithm Flow Chart

Step 1: Start

Step 2 : Input first number A
Step 3 : Input second number B Start
Step 4 : Add the two numbers and store itin
total

Step 5 : Print Total / Input A /
Step 6 : Stop
/ Input B /
}

| Totai=a+B |
!
/ Print Total /

Stop

}

Algorithm and flow chart to find the average of three numbers.

Algorithm Elow Chart

Step : Start

Step 2 : Enter Three Mumbers A, Band C (Start)
Step 3: Compute Average = (A+B+C)N3

Step 4 - Print Average l

Step 5: Stop / Input A.B /

w
| Average=(A+B+C)/3 |

/ Print A:.rerage /

Stop

Construct flowchart for the given problem.

Algorithm and a flow chart to calculate area of square.

Algorithm Flow Chart

Step 1 Start

Step 2 - Read value for a (side) St
Step 3 [Compute] Area =A* A

Step 4 QOutput Area

Step 5 Stop / Read A /

| Area=A*A |

Apply flowchart for the following

a. Sequence structure.

In a computer program or an algorithm, sequence involves simple steps which are to be

executed one after the other. The steps are executed in the same order in which they are
written.

An Example Using Sequence

Problem: Write a set of instructions that describe how to make a pot of tea.
[Do Step A]
+ Pseudocode Flowchart < begin)
BEGIN
[Do Step B] fill a kettle with water 1ill 8 kettie
boil the water in the kettle - i‘
put the tea leaves in the pot
[LI SR] pour boiling water in the pot s
END in the kettle
End ‘

put the tea
leaves in the pot

.

pour boiling
water in the pot

25

b. Selection Structure.

Selection is used in a computer program or algorithm to determine which particular step or set of
steps is to be executed.

Start

Input A, B /

Yes

Yes

Print A is greater
than B

Print B is greater
than A
End Print A is equal to B /

Cover
Tomatoes

Uncover No
Tomatoes

c. Looping Structure.

* Repetition allows for a portion of an algorithm or computer program to be done any number
of times dependent on some condition being met.

* An occurrence of repetition is usually known as a loop.

* An essential feature of repetition is that each loop has a termination condition to stop the
repetition, or the obvious outcome is that the loop never completes execution (an infinite
loop).

Do While Loop Repeat Until Loop

{

Do Task
l True
False

L_False & congition?

False

TART —
o
-_5__5tar‘t__f_#;
Statement I

- .
-+

Y

Is Condition True?
Check Again

Statament

Questions

P w N

b

Define ‘programming language’.
Can programming be used to solve all types of problems? Why and why not?
Describe how Computational Thinking can be used to solve programming problems.

Identify THREE (3) advantages offered by high-level languages (HLLs) over low-level
languages (LLLS).

Machine language is fast but not programmer-friendly. Discuss.

(a) Describe how 'structured programming' is different from 'spaghetti coding. (b)
Between Fortran and C, which programming language is more structured? Why?

Why is machine-independent language usually preferred over machine independent
language?

Before a program can be executed, it has to be compiled from its source code.
Describe the difference between executable file and source code.

27

Fundamentals
of C Language

%

/1_,.

) Y
AN N\ \ %
AR V/ A 4 hS \ \
N NN / \ // n// 5 i
\ ////////// ..,,,M// 4/ \

W

¢ Variables

* Avariable is just a named area of storage that can hold a single value (numeric or
character).

* they represent some unknown.

* Programming language C has two main variable types
* Local Variables
* Global Variables

Example: Local vs. Global

#include<stdio.h>

void print number (void); p is declared outside of all

functions. So, it is a global
int p;

void main (void)

{

int g = 5; «—

g is declared inside the
printf (“g=%d”, q); ~ function main. So, it is a local
variable to the function.

p can be used anywhere
void print_number (void)

{
printf (“$d”,p)5
qa=q+5;

} \

Error! g can only be used in
the function main, because it "
is a local variable

1 #include <stdio.h>

2 #include <conio.h>

3 a variable must be
4 void main () declared before it
5 q can be used !!

& int |&;

7 int|B;

8 int|C;

5 int|D;
10 float| Eagle;
11 float| Ferry;
12 char [Games;
13 char |House:;

* Constants:
* the values that never change,

* Constants can be very useful in C programming whenever you have any value that is
repeated in your program.

1 finclude <stdio.h>
2 finclude <stdlib.h>
3
‘<§:£é;£;ﬁe BI 3.i;£§§££:>
o
& void main()
71

#include <stdio.h>
#define PIE 3.14
float ComputeVolume (float r, float h, float ans, float r2);

int main() {
float radius, height, ans, r2;
printf ("Radius: ");
scanf ("%g", &radius);
printf ("Height: ");
scanf ("%g", &height);
ans = ComputeVolume (radius, height, ans, r2);
printf ("Volume: %g\n", ans);
return 0;

t

float ComputeVolume (float r, float h, float ans, float r2)
{

r2 = r*r;

ans = (1/3)*PIE*r2*h;

return ans;

¢ Variables and Constants
* Name or identifier can be declared with constant,

4 void main()
31
G int o = 21;
\ 7 int B = 1;
8 int o = 3;
Nn = 810;
10 float Eagle = £5.4;
11 float Ferry = 45.124;
12 chan Game = 'g';
12 chan House = 'p';

* Rules for Variables & Constants

* may be given representations containing multiple characters. But there are rules for
these representations..

* May only consist of letters, digits, and underscores

* May be as long as you like, but only the first 31 characters are significant
* May not begin with a number

* May not be a C reserved word (keyword)

* May only consist combination of letters, digits, and underscores

* May be as long as you like, but only the first 31 characters are significant

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define PI 3.141552¢
5

6 void main()

7 {

8 int umur;

9 int umur saya:;
10 int umur remaja 1:;
11 int umur remaja 2
12 int umur remaja 3
13 int umur masa saya remaja;

* Rules for Variables & Constants
* May not begin with a number
* May not be a C reserved word (keyword)

#include <stdio.h>
#include <stdlib.h>
fdefine PT 2.1415926
oid main()

int 3 haril;

int 455 baris;
int int:

= to R T B R ¥ BT U S I
-~ g

e

¢ Rules for Variables & Constants

* To a variable means to create a memory space for the variable depending on
the data type used and associate the memory location with the variable name.

* The shortest variable name is a letter of the alphabet.

Variables are typically in lowercase. (All of C is lowercase for the most part.) They can
contain letters and numbers.

* AGAIN!!.You should not begin a variable name with a number. They can contain
numbers, but you begin it with a letter.

N

73 .
(};g;l—\:’;;

= %* 5
~— area=h *w h

Y

Example:

h= 2 meter

W = 4 meter
area = ? output

int h;
int w;
int area;

A=nr?

If ris integer??
Example r = 8 meter

intr;
If all value is floating point?? Example

r = 8.24 meter
floatr; A=1x8.24x8.24

float A; 33

/ength: L

—_»
Width: W
If all value is floating point?? If all value is integer??
float height; int height;
float width; int width;
float length; int length;

Questions

Write down the variable name with data type

A]

© mathwarehouse.com

Global variables and Local variables

Local Global

Variable Variable

* Variables are classified into Global variables and Local variables based on their scope.

* The main difference between Global and local variables is that global variables can be accessed
globally in the entire program, whereas local variables can be accessed only within the function
or block in which they are defined.

* The scope of variables can be defined with their declaration, and variables are declared mainly
in two ways:

* Global Variable: Outside of all the functions
* Local Variable: Within a function block 34

Global variables Example: Local variables Example:

1 #include <stdio.h> 1 #include <stdic.h>

2 #include <stdlib.h> 2 #include <stdlib.h>
3

4int a;

S 5

6 void main() & void main()

7 71

g int B; 8

10 int p; 10 N

Advantages and Disadvantages of Global and Local Variable

_ Global variable Local variable

Advantages * Global variables can be * The value of a global variable can
accessed by all the functions be changed accidently as it can
present in the program. be used by any function in the

* Onlyasingle declaration is program.
required. * |f we use a large number of

* Very useful if all the functions global variables, then there is a
are accessing the same data. high chance of error generation

in the program.

Disadvantages * The same name of a local * The scope of the local variable is
variable can be used in different limited to its function only and
functions as it is only recognized cannot be used by other
by the function in which it is functions.
declared. * Data sharing by the local variable

* Local variables use memory only is not allowed.

for the limited time when the
function is executed; after that
same memory location can be
reused.

Comparison Chart Between Global Variable and Local Variable

Global Variable

Global variables are declared outside all
the function blocks.

The scope remains the

program.

throughout

Any change in global variable affects the
whole program, wherever it is being used.

A global variable exists in the program for
the entire time the program is executed.

It can be accessed throughout the
program by all the functions present in the
program.

If the global variable is not initialized, it
takes zero by default.

Global variables are stored in the data
segment of memory.

We cannot declare many variables with
the same name.

Keywords in C Programming Language :

* Keywords are those words whose meaning is already defined by Compiler

e Cannot be used as Variable Name
* There are 32 Keywords in C

Keywords

auto double
break else
case enum
char extern
const float
continue for
default goto
do it

C Keywords are also called as Reserved words

Local Variable

Local Variables are declared within a
function block.

The scope is limited and remains within
the function only in which they are
declared.

Any change in the local variable does not
affect other functions of the program.

A local variable is created when the
function is executed, and once the
execution is finished, the variable is
destroyed.

It can only be accessed by the function
statements in which it is declared and not
by the other functions.

If the local variable is not initialized, it
takes the garbage value by default.

Local variables are stored in a stack in
memory.

We can declare various variables with the
same name but in other functions.

int struct
long switch
register typedef
return union
short unsigned
signed void
sizeof volatile
while

static

36

* Use keywords in programmes.

1 #include <stdic.h>

2 #include <stdlib.h>
3

4 void main ()

5 {

& int Temperature;
7 fleoat Height:

g double Volums:;

=] char Name;

10 unsigned Distance;
11

12

Exercise: determine the variables & constants

Diagram shows sector of circle ORQ with centre O.

R

12 em

[7 cm

o

)
By using n = —, calculate

(a) the perirheter for the whole diagram in cm,
(b) area of the shaded region in cm?.

The basic data types in C.

* A program usually contains different types of data types (integer, float, character etc.) and
need to store the values being used in the program.

* Clanguage is rich of data types. A C programmer has to employ proper data type as per
his/her requirements. C language provides various data types for holding different kinds of
values.

* Clanguage provides various data types for holding different kinds of values.

* There are several integer data types, a character data type, floating point data types for holding
real numbers and more.

* C has a concept of 'data types' which are usedto define a variable before its use. The
definition of a variable will assign storage for the variable and define the type of data that will
be held in the location.

* C has different data types for different types of data and can be broadly classified as:

= Primary Data Types
= Secondary Data Types

37

Primary Data Types

int
« for
integer

PRIMARY
DATA float

e for decimal
TYPES point

char

« Character &
String

Secondary Data Types

SECONDARY
DATA
TYPES

enumeration

Integer types
* C provides several standard integer types, from small magnitude to large magnitude
numbers: char, short int, int, long int, long long int.

* Each type can be signed or unsigned. Signed types can represent positive and negative
numbers while unsigned can represent zero and positive numbers.

* C provides several standard integer types, from small magnitude to large magnitude
numbers: short int; int; long int; long long int;

short int int long int
1Byte 2 Bytes 4 Bytes
1 Byte = 8 Bits 1 Byte
[\
1111111
8 Bits

Numeric: Integer types

* Generally an integer (int) occupies 2 bytes memory space and its value range limited to -
32768 to +32767 (thatis, -215 to +215-1).

* Asigned integer use one bit for storing sign and rest 15 bits for number.

F

F 2 Bytes memory

Signed FFFF HEX = -32768 to 32767 DECIMAL
F Unsigned FFF HEX = 0 - 65535 DECIMAL
F

Integer types
:

long int

Integer
| T AR A
types

short int

Integer types

Data Type Range Bytes | Format
signed char -128 to + 127 1 %c
unsigned char 0 to 255 1 %oc
short signed int -32768 to +32767 2 %d
short unsigned int | 0 to 65535 2 %ou
signed int -32768 to +32767 2 %d
unsigned int 0 to 65535 2 %ou
long signed int -2147483648 to +2147483647 | 4 %ld
long unsigned int | 0 to 4294967295 - %lu
float -3.4e38 to +3.4e38 - Yof
double -1.7e308 to +1.7e308 8 Ylf
long double -1.7e4932 to +1.7e4932 10 %Lf
Note: The sizes and ranges of int, short and long are compiler
dependent. Sizes in this figure are for 16-bit compiler.

Syntax:
int <variable name>;

int num1;

short int num2;

long int num3;

Example: 5, 6, 100, 2500.

Numeric: Floating point types

The float data type is used to store fractional numbers (real numbers) with 6 digits of
precision. Floating point numbers are denoted by the keyword float.(eg. 0.000001)

When the accuracy of the floating point number is insufficient, we can use the double to
define the number. The double is same as float but with longer precision and takes double
space (8 bytes) than float.

To extend the precision further we can use long double which occupies 10 bytes of memory
space

float
4 Bytes

double |
8 Bytes

Inng double
10 Bytes

40

Syntax:

float <variable name>; like
float num1;

double num2;

long double num3;

Example: 9.125, 3.1254.
Floating Point Data Type Memory Allocation

Character:
* Character type variable can hold a single character. As there are singed and unsigned int
(either short or long), in the same way there are signed and unsigned chars;

* Both occupy 1 byte each, but having different ranges. Unsigned characters have values
between 0 and 255, signed characters have values from —128 to 127.

Syntax:
char <variable name>; like
charch =‘a’;

Example: a,b,qg,S,].

String:

* Astring in Cis an array of char values terminated by a special null character value '\0'. For
example, here is a statically declared string that is initialized to “bye":

char str[4]; // need space for chars in str, plus for terminating \O' char

str[0] = ‘b";
str[1] ="y,
str[2] = ‘e';
str[3] ="\0";

printf("%s\n", str); // prints bye to stdout

Data type and conversion specification

Data type

long double
double

float

unsigned long int
long int
Unsigned int

int

Unsigned short
short

char

Exercise:

printf conversion
specification

%Lf
%f
%f
%lu
%ld
%u
%d
%hu
%hd

%c

scanf conversion
specification

%Lf
%lf
%f
%lu
%ld
%u
%d
%hu
%hd

%c

Determine what types of data to used if the given number is?

Question:
Number is
234
23.122

2
2
“Dad”
2314.1121231

Input-Process-Output (IPO) analysis

* Understand the input, process and output before start to code. Begin the coding with
Input-Process-Output (IPO) analysis.

* Use IPO analysis to understand the problem statement clearly. This is done by breaking a

problem statement into the following components:

a) INPUT: Find out what the inputs are. Inputs are data inserted into the program
before it begins processing. Identifying input is not as easy as it sounds, so please
pay attention to the problem statement.

PROCESS: This describes how to process the INPUT into a desired OUTPUT.
Processing includes using mathematical formula, word processing steps, or
computer logic to transform the value of the input.

b)

c)

OUTPUT: Output is the expected result after processing. This is usually the
displayed output on the computer screen or data saved into a text file.

* It may be handy to create an IPO chart when analysing the problem statement. An IPO
chart is a three-column chart with Input, Process and Output as the column headers. See
the example above:

Exampl

e:

Enter the first
number

Enter the second
number

Choose the
“addition”
operation

Store the first
number in
memory

Store the second
number in
memory
Perform the
operation on the
two numbers
stored in
memory

* Result of
operation

* To produce an IPO chart, one should first analyse the problem statement or case. An IPO
analysis can be done systematically by asking the following questions:

Step 1: Ask yourself, "What is the expected output?"e

Step 2: Ask yourself, "What is the process required to get the output?" This can be
any formula or conversion steps given by the problem. If no formula or steps are
given, determine the appropriate formula or steps from your general knowledge or

from research.

Step 3: Ask yourself, "What are the inputs the program needs from the user?"

43

Questions

* Given the following problem statement, conduct an IPO analysis to produce
the IPO chart:

* Problem statement: “ A shape program reads the radius and computes the
circumference and area of a circle.

IPO analysis:

Radius
D—

* The program ‘display circumference and area’, indicating the output of the
program.

e The formula to compute the circumference and area are not given. They are
standard formula (4 = mr?).

* The formula requires inputs from users. The phrase ‘read radius’ indicates
that the radius is the input.

IPO chart:

Radius

)

Get radius U Circumference
Circumference = 2 x 3.142 x U Area
radius

Area = 3.142 x radius x radius
Display circumference and area

44

Six (6) phase of C development environment:

1. Editor - Software packages for the C/C++ integrated program development
environments such as Microsoft Visual Studio have editors that are integrated into
the programming environment.

C program file names should end with the .c extension.

Textl.c = B

#include <stdio. h: =

void maini)

printf{"WVelcone to C Programming~n"):

1] | oy
2. Preprocessor
. In a C system, a preprocessor program executes automatically before the
compiler’s translation phase begins.
. commands called preprocessor directives, which indicate that certain
manipulations are to be performed on the program before compilation.
3. Compiler
. the compiler translates the C program into machine-language code. (High
language - Machine language)
4, Linker
. contain references to functions defined elsewhere, such as in the standard

libraries (e.g <stdio.h>) or in the private libraries of groups of programmers
working on a particular project.

5. Loading

. Before a program can be executed, the program must first be placed in
memory. This is done by the loader, which takes the executable ‘image’
from disk and transfers it to memory. Additional components from shared
libraries that support the program are also loaded (if).

6. CPU

one instruction at a time. (*.exe)

[{HEADING OF PROGR

#include<header files=
Global dedarations;
hain ()
{
Declaration part;
Executable part

Input selection

Process

preprocessor

header file

main function

user program inside

{...}

Qutput selection

Open text 1
editor. 2
3

4

5

Save file as 6
file-name.c 7
8

9

1
Compile 11
12

Build

Run & Result

user defined function (if
any)

/* Fig. 2.1: fig02_01l.c
A first program in C */
#include <stdio.h>

/* function main begins program execution */
int mainQ)
{

printf();

0 return 0; /* indicate that program ended

successfully */

} // end function main.

Try this....and observe..

/* Fig. 2.3: fig02_03.c
Printing on one 1ine with two printf statements */
#include <stdio.h>

/* function main begins program execution */
int main(void)

printf{ "Welcome " J;
printf{ "to C!'\n" };

- - - L T]

10
1 return 0; /* indicate that program ended successfully */
12 1} /* end function main */

Welcome to C!

Try this..

/* Fig. 2.4: fig02_04.c
Printing multiple lines with a single printf */
#include <stdio.h>

/* function main begins program execution */
int main(void)
{

printf("Welcome\nto\gC!\n");

return 0; /* indica
} /% end function pai

Welcome
to
C!

put \n

that program ended successfully */

-0 WVoeONONWNE WN=—

+/

Notice that the characters \n were not printed on the screen. The backslash (\) is
called an escape character..

try to change \n — \a.. observe what happen

N g

Escape sequence Description

\n Newline. Position the cursor at the beginning of the next line.
\t Horizontal tab. Move the cursor to the next tab stop.

\a Alert. Sound the system bell.

N Backslash. Insert a backslash character in a string,

A" Double quote. Insert a double-quote character in a string.

How to view number..try edit, compile and run!

1 /*This program is show

2 how to

3 a) initialize the number,

4 b) print the number

3 */

&

7 #include <stdioc.h>

8 finclude <stdlib.h> //<-this one no nesed to write..
9

10 int main ()

11 { int is refer to the
12 int number 1; integer

13 int number 2,number 3,number 4;

14

15 number 1 = 12; try to change this..
1¢ number 2 = 23;

17 number 3 = Z;

18 number 4 = 18;

19

20 printf ("the number is %d\n",number 3);

21

22 system ("pause") ; //<-this one no nesd to write..
23 return 0

24 } number_3 -> %d

25 | Value change - %d change

48

How to view number..try edit, compile and run!

[T G T R CC T S T I T e i el el e e e
R s S T RS SO R T o T e T W T w S O T 0 Y S T L T i e

Wom =1 gy Lo W B

%d just for integer only!!

finclude <stdioc.h>
finclude <stdlib.h> //<—this cone no need to write..

int main()
{
int number 1;
int number 2,number 3,number 4;

number 1 = 12; try to change this..
number 2 237
number 3 = 2;
number 4 = 18;

printf ("the number is zd\n", nlunbe.-r_.?;} ;
printf ("the number is sd\n", number 1) ;
printf ("the number is &d\n" snumber 2) ;

system ("pause") ; //<-this one no nesed to write..
t ;
return 0 number_3 - %d
Value change - %d change

49

The Structure Of C Programs

A C program basically consists of the following parts :

* Preprocessor directives

* Functions

* Variables

* Statements & Expressions
* Comments

* Preprocessor directives.
* Text must be start with #include<header.h>
* #define is one of the preprocessor directives.

1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 /* function main begins program execution */
6 int main(Q)

7 {

8 printf();

9

10 return 0; /* indicate that program ended successfully */
11

12 } // end function main.

Welcome to C!

* #define is one of the preprocessor directives.

1 finclude <stdio.h>
2 finclude <stdlik.h>

4 fdefine Max 10

5

6 int main()

71

g printf ("the number is sd\n" ,Max) ;

9 aystem ("pause") ;

10 return 0;

11 }

12 B | ENProject.NewhC++\C\Projectl.exe
13 the number i= 108

Press any key to continue .

50

* The C preprocessor (cpp) is the preprocessor for the C and C++ computer programming
languages.
* The preprocessor handles directives for
* source file inclusion (#include)
* macro definitions (#define), and
* conditional inclusion (#if).
* Header file is a file that allows programmers to separate certain elements of a program's
source code into reusable files.
* These are collectively known as the standard libraries and include:
* string.h : for string handling
 stdlib.h : for some miscellaneous functions
* stdio.h : standardized input and output
* math.h : mathematical functions

EA\.AC\Project]\Text2.c FoJ o=l | [57 "Eaproject New\C\Project1\Debug\Text2.... (] I

#include <stdio h: " Test oL
#include <stdlib.h:» Fress any key to continue

vold main()

printfi{"Test~n");

systen("pause") ; P .
systen| "color fo"); Compile &
Run y
t n n . =
systen{’pauss"}. e "E:"-.Pru::-ject.Nm‘-.C‘-.Prc:jectl‘-.Debug\TextE....| = | B[]
H Test -
Prezz any key to continue . . .

Press any key to continue . . .

Color attributes are specified by THO hex digits —— the first

corresponds to the background; the second the foreground. Each digit

can be any of the following values:

1] B = Black 8 = Gray
1 = Blue 9 = Light Blue
% = Ereen E = tight Ereen
= Aqua = Light Aqua -

& = Red C = Light Red under header Stdlib.h
9 = Purple D = Light Purple
6 = Yellow E = Light Yellow v
1 = White F = Bright White o

51

* These are collectively known as the standard libraries and include:
* ctype.h: for character handling
* conio.h : library functions for performing "console input and output" from a program

* Tells computer to load contents of a certain file;
* <stdio.h> allows standard input/output operations

printf prints formatted byte/wchar_t output to stdout,
scanf reads a byte string from stdin
puts writes a byte string to stdout
gets reads a byte string from stdin

* conio.h is a C header file used in old MS-DOS compilers to create text user interfaces.;
e <conio.h> allows console input/output operations

getch Reads a character directly from the console without buffer
putch Writes a character directly to the console

cscanf Reads formatted values directly from the console

cprintf Formats values and writes them directly to the console.

* Defines numeric conversion functions, pseudo-random numbers generation func
memory allocation, process control functions;

e <stdlib.h> allows standard input/output operations

system Execute system command (function)

rand Generate random number (function)

abort Abort current process (function)

1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 /* function main begins program execution */
6 int mainQ)

7 {

8 printf("welcome to C!\n");

9

10 return 0; /* indicate that program ended successfully */
11

12 } // end function main.

. Block {...}
— Text surrounded by braces {...}.
— Seeline no.7 and no.12 above.

. Brace { }

— Aleft brace, {, begins the body of every function (line 7). A corresponding
right brace ends each function (line 11).

1 /* Fig. 2.1: fig02_01l.c

2 A first program in C */
3 #include <stdio.h>
4
5

/* function main begins program execution */

6 int mainQ
» {
printf("welcome to C!\n");

9
10 return 0; /* indicate that program ended successfully ¥/

11
12 } d function main.

. return O; statement

— inline no.10, there are the statement return O; which is indicate that the
function is successful normally terminated.

— Why return 0, bcoz main function should return integer data type.
— void main() does no need to return O.

53

1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 /* function main begins program execution */
6 int main()

7 {

8 printf("welcome to C!\n");

9

10 return 0; /* indicate that program ended successfully */
11

12 } // end function main.

Comments
- Text surrounded by /* and */ is ignored by computer, also by /. See line
no.1 & 2
- Used to describe program

1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 /* function main begins program execution */
6 int main(Q)

7 {

8 printf("welcome to C!\n");

9

10 return 0; /* indicate that program ended successfully */
11

12 } // end function main.

54

Understand Operators and Expressions

* Operators are symbols which take one or more operands or expressions and perform
arithmetic or logical computations.

* Types of operators available in C are as follows:
* Arithmetic
* Assignment
* relational
* Logical
* Boolean operator/Bitwise

variable(operand)

expression

constant

OPERATOR

* Arithmetic Operator
* All the basic arithmetic operations can be carried out in C.
* Both unary and binary operations are available in C language.

*Unary operations operate on a singe operand, therefore the number 5 when
operated by unary — will have the value —5.

C operation Arithmetic operator Algebraic expression C expression
Addirion + f+7 f+7
Subtraction - p-rc p-c
Multiplication & bm b *m
Division / x/}'ﬂriﬂr x+y x/y

Remainder % rmod s r%s

Questions
Write the C expression from the algebraic expression

algebraic expression C expression

Y =mX2+d+m xk Y =m*X*X+d/m*kK;
s=s3+d-w2

v=%V+axt

E = mc?

Z=kD-bV2+m

0 =0.23m — 0.11k?

Area = %(P x L)

Formula C Expression

* Arithmetic Operator
¢ Both unary and binary operations are available in C.

+a Positive a -b Negative b
int a; int b;

a=10; b=10;

m=a; m=-b;

56

* Arithmetic Operator
¢ Both unary and binary operations are available in C

prefix ++a prefix —a
a+l .
postfix at++ postfix a--
int a;
a=10;
m=a++;
m=11 is the answer
Arithmetic Operational
Operator name Syntax
Basic assignment a=b
Addition a+h
Subtraction a-b
Unary plus (integer promotion) ta
Unary minus (additive inverse) -a
Multiplication at*h
Division a/b
Modulo (integer remainder)"'= ! ath
Prefix +a
Increment
Suffix at+
Prefix --a
Decrement
Suffix a--

a-1

int a;
a=10;

m=a--;

m=9 is the answer

57

* Relational Operator
* Csupports the following relational operators.

* Oftenitis to compare the relationship between operands and bring out a
decision and program accordingly.

* Example, we might make a decision in a program, for example, to determine if a
person’s grade on an exam is greater than or equal to 60 and if it is to print the
message “Congratulations! You passed.”

Questions

Write the C expression from the algebraic expression
algebraic expression C expression
X is greater than 46 X>46
y is lower than 423
221 is lower than m
Ais greater than or equal to 257
A'is greater than or equal to s

W is not equal to K

Relational Operator Sai i \

Algebraic equality or C equality or Example of

relational operator relational operator C condition Meaning of C condition

Equality operators -

= == X =y x is equal to y -

= x =y x is not equal to y §
Relational operators

> > X >y x is greater than y Cos
< < X <y x is less than y F
> >= X >=y x is greater than orequal toy ~ §iie.!
= <= X <=y x is less than or equal to y

* Logical Operator

* So far we have studied only simple conditions, such as counter <= 10, total > 1000,
and number != Value.

* Cprovides logical operators that may be used to form more complex conditions by
combining simple conditions.

* The logical operators are
* && (logical AND),
* || (logical OR) and
* I (logical NOT also called logical negation).

* Logical Operator (&& - and)
* Variablel&&Variable2

expression | expression2 expression| && expression2
0 0 0
0 nonzero 0
nonzero 0 0
NONZero NONZEero 1
Questions
Write the C expression from the algebraic expression and result
algebraic expression C expression result
0 and with 1 0&&1 0 (false)
0 and with O
1 and with 1

0 and with 124
12 and with 111

* Logical Operator (|| - or)
* Variablel| | Variable2

expressionl expressionZ expressionl | | expression2

0 0 0
0 Nonzero 1
nonzero 0 1
nonzero Nonzero 1

* Logical Operator(Bitwise) (! - not)
* I(Variablel)

expression lexpression

NONZero 0

Questions
Write the C expression from the algebraic expression and result

algebraic expression C expression result

0 or with 1 0]|1 1 (true)

0 or with 0

1 orwith 1 o

0 or with 124
12 or with 111

algebraic expression C expression ~ result

not 0 10 — -1 (trué.). S
not 1 C e BN
not (1 or 1) o

not (0 &&124) e

T R T e

(not 12) or 111

60

Logical Operational

QOperator name Syntax
Logical negation (NOT) la
Logical AND 2 &b b
Logical OR allkb

* Boolean Operator(Bitwise)

* The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (?), and
bitwise-inclusive-OR (|) operations.

* & - The bitwise-AND operator compares each bit of its first operand to the
corresponding bit of its second operand. If both bits are 1, the corresponding result
bit is set to 1. Otherwise, the corresponding result bit is set to 0.

* Boolean Operator(Bitwise)

* The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (?), and bitwise-
inclusive-OR (]) operations.

* A -The bitwise-exclusive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If one bit is 0 and the other bitis 1, the

* Boolean Operator(Bitwise)

* The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (?), and bitwise-
inclusive-OR (|) operations.

* |- The bitwise-inclusive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If either bit is 1, the corresponding result bit is
set to 1. Otherwise, the corresponding result bit is set to 0.

Example

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main()

5 {

6 short int digitl; i C:‘*.LUsers\hafriz.ﬁkr'|t=_l‘\|:les|c‘h:||3...[i'ﬁl-‘;;—hj1
7 short int digitz;

8 short int answer; :
9 =
10

11

12

13 answer=digitl&digitz; Press any key to continue . . . _
14 printf ("#X\n\n\n", answer

15

16 answer=digitl®digitZ;

17 printf ("FX\n\n\n", answer)

18

19 answer=digitl|digitZ;
20 printf ("F#X\n\n\n",answer) ;
21
22 system ("pause") ;
23 return 0;
24 1

[R4]
o

. Exercise . Bitwise ~ & | *

4&3
4A & 2B (assume in hex)

2|4
28&6|3
(8"3) &6

973)|(3&6)

2 & 3 &5] 10 (assume in decimal)
4+4&4

5-2&5

Boolean(Bitwise) Operational

Operator name Syntax
Bitwise NOT v
Bitwise AND Lan
Bitwise OR 2| b
Bitwise XOR 2 A b ;
Bitwie left shit"**
Bitwise right shif """ "= %

Left shift

BITWISE OPERATORS «

<< Shift Left
SYNTAX BINARY FORM VALUE
X=T 00000111 7

X=x<<1; 00001110 14
X=x<<3; 01110000 112
X=X<<2; 11000000 192

* Assignment

» often just called the "assignment operator", is a special case of assignment

operator where the source (right-hand side) and destination (left-hand side) are of
the same class type.

eg: a=a+b; mean a(new) = a(old) + b;

inta,b;

a=3; b=5; > a=a+tb; a+=b;

azatb; > d=d-b; d-=b;
e=exb; e*=b

m=m-=Kk; m/=k

Compound(assignment) Operational

Addition assignment a+=b a=a+b
Subtraction assignment a-=b a=a-b
Multiplication assignment a*=b a=a*b
Division assignment a/=b a=a/b
Modulo assighnment a%=b a=a%b
Bitwise AND assignment a&=b a=a&b
Bitwise OR assignment al=b a=alb
Bitwise XOR assignment a’=b a=a’b
Bitwise left shift assignment a<<=b a=a<<b
Bitwise right shift assignment a>>=b a=a>>b
Questions

Write the answers for each expression

1=3%5+5%3;
i=3+5%2%3;
1=4+5%3%3;
1=6%2%5%3;
1=4>2;
1=4>2+5;

=4>=4%0%2;

1=41=3;

Hierarchy Of Operator

Associativity

Operator
o o .
+ = ++
* / %
+ -

<< >>

< <= >
— |=
&

A

|

&&

I

73

= += -
Example

sizeof (#pe)

<<= >>= %=

left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

highest
unary
multiplicative
additive
shifting
relational
equality
bitwise AND
bitwise OR
bitwise OR
logical AND
logical OR
conditional
assignment

comma

T={4&815%6>=3*3

T T T

I I I

1 I I

1 I I

I I I

1 I I

I I I

1 I I

v v v

100 t5) 9
&1000

Questions

Write the answers for each expression

Question Answer
I=3%4+6-8*(2+22) | | 3;

|=13&(5+9%2%4-14);

I=4+3%2-5%6<=19%10;

=6%27%5%3;

Programming Example

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 void main ()
5 {
? int 3=0; assign J=v Prompt number
: while (§<=100) 0to 100
9 {printf ("%d\t",3)
10 J=9+1;
11 }
12
13 system ("pause") ;
14
15}
16

E\Project. New\C\Exercise_0l.exe

Press any key to continue

Programming Example

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 void main()
51
3 int j=0; //assign =0
K
a8 while (j<=100)
g {printf("&d\t",3) ;
10 J=3+1;
11 }
12
13 system ("pause") ;
14
15 }
16
Exercise

Modify the programming above

Modify the program to print as follow

0 2 4 S SO

Modify the program to print as follow

o B~DNO

200

Programming Example

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 void main()
5 {
& int j=0-; //assign F=0
7
a8 while (3<=100)
9 {printf ("%d\t",3);
10 J=3+1;
11 }
12
13 system ("pause") ;
14
15 }
16
Exercise

Modify the programming above

Modify the program to print as follow

No X2 X3
0 0 0
1 2 3
2 4 6
3 6 9
4 8 12
5 10 15
20 40 60

extra notes

printf{ "¥d" , (x ==w || x ==y || x = z));
In this example, if x is equal to either w, y, or z, the second argument to the
printf function evaluates to true and the value 1 is printed. Otherwise, it

evaluates to false and the value 0 is printed. As soon as one of the
conditions evaluates to true, evaluation ceases.

69

extra notes

. The following examples illustrate the logical operators:
int w, X, ¥, Z;

if (x<y B8 y<z)
printf{ "x is less than zn");

. In this example, the printf function is called to print a message if x is less than
y andy is less than z. If x is greater than y, the second operand (y < z) is not
evaluated and nothing is printed.

Exercises
Observe what the output for each programming

1 #include <stdic.h>
2 finclude <stdlib.h>

32

4 int main()

51

G int a; //variable 2 untuk simpan satu nombor.
7

a8 printf ("Enter one number:\n") ;

9 scanf ("%d", &a); //must have '&' before a
10

11

12 printf ("The entered numbers is = %d\n",a);
13

14 aystem ("pause”) ;

15 return 0;

16 }

17|

1 #include <stdio.h>
2 finclude <stdlib.h>

3

4 int main ()

5 {

[3 int a; //variable a untuk simpan satu nombor.
7

a8 printf ("Enter one number:\n") ;

) scanf ("%d", &a) ; //must have '&' before a
10

11

12 printf ("The entered numbers is = %d\n",a);
13

14 system ("pause") ;

15 return 0;

16 }

17|

70

Exercises
Observe what the output for each programming

Program to add 2 integers

1 #include <stdioc.h>
2 finclude <stdlib.h>

3

{

m =1 @ o

int main()

int a, b, c;

printf ("Enter first numbers to add:");
scanf ("%d4d", &3) ;
printf ("\n") ;

printf ("Enter second numbers to add:");
scanf ("4, &b) ;

printf ("\n"} ;

c = a + b;

printf ("Sum of entered numbers = %d\n", c);

system ("pause") ;
return 0;

Observe what the output..

have 3 variable,
a for first number..
b for second number..

c for the total..

Create C Program..

Kon - Cone

71

Exercises
Create C Program to display 1 to 100

HNumbers 1 to 100 Chart - nicholasacademy.com

21|22|23|24(25(26|27|28|29| 30
31[32(33(34|35|36|37(38(39| 40
41|42|43|44|45(46|47|48|49| 50
51152|53|54|55|56|57|58(59| 60
61(62|6364(65|66/67|6869| 70
T1172|73|74|75|76|77|78(79| 80
81[82(83(84/|85|86|87|88(89(90
91192193(94|95|96|97(98(99(100

Exercises

* Implement mathematical calculations in simple C program

* Implement mathematical calculations using the function in the main
function

Selection
Statements

IF statements
- |[F statements
- Nested IF statements

IF-ELSE statement

SWITCH statements

Y)
ME e s
R o pPnction 2] 1this, each(fun

S e ALl (870, call(this, c)

) o : if

L Al /isible=function(a

Tt d(a,e):ccla +
ltnoth encodeURIComponent

else for(c in a)cc(calch,b, et

ais)), filter(function(){ -
el 9 t uls‘rray n.1plC, functlon rety
l

{return

function
(t peatch (k)1
function gc{trY!

{return nev

Control Structure

C provides several programs for control statement and lets to execute the instructions

in a non-sequential tasks (skipping a block of instructions or execute a block of
instructions repetitively.

* 4 basic control structures:-
* sequence structure
* selection structure
* repetition structure (iteration/ looping)
* Jumps statements

A. Sequence Structure

* the simplest of all the structures.

* The program instructions are executed one by one, starting from the first instruction and
ending in the last instruction as in the program segment.

Example :
x = 5; (S1)
y = 10; (52)
Total = x * y; (S3)
printf (Y Total =%d”, Total); (S4)
Entry Exit
» S1 » S2 » S3 " S4 —

B. Selection Structure

* The selection structure allows to be executed non-sequentially.

* |t allows the comparison of two expressions, and based on the comparison, to select a
certain course of action.

* There are three types of selection statements:
* if statement

* either performs (selects) an action if a condition is true or skips the action if
the condition is false.

* if-else statement

performs an action if a condition is true and performs a different action if the
condition is false.

* switch statement.

performs one of many different actions depending on the value of an
expression

75

Selection Structure (if)

This is used to decide whether to do something at a special point, or to decide between two
courses of action.

if selection statement : “For example, suppose the passing grade on an exam is 60.”
* Pseudo-code:

If students grade is greater than or equal to 60
Print “Passed”

* (Csyntax:
if (grade >=) {
printf();
} /* end if */
* Flowchart:

true

grade == 60 o print “Passed”

falseé

An example of if statement positive and negative number:

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main()

5 {

& int a;
7

a8

printf("\n Enter a number:"); g &

9 scanf("&d", &3);
10
11 if(a>=0)
12 {
13 printf("\n The number %d is positive.\n",a):
14 }
15
1é if(2<0)
17 {
18 printf("\n The number %d is negative.\n ",z):
19 }
20
21 system ("pause") ;
22 return 0;

23}

../../../Project.New/C/Chapter3/Chap3.5_if.c
../../../../Project.New/C/Exercise_16_if_if.c
../../../../Project.New/C/Exercise_16_if_if.c

Another example of if statement: compare 2 numbers

3

4
51
<]
7
8

Z)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

Another example of if statement: check ur gender

1 #include <stdic.h>
2 #include <stdlib.h>

int main()

int a;
int b;

printf ("\nEnter 1lst number: ") ;
scanf ("&%d", &3);

printf ("\nEnter 2nd number: ") ;
scanf ("&d", &b):;

if (a>b)
{
printf("\nThe number a = %d is more than b

if (a2<h)
{
printf("\nThe number a = %d is less than b

system ("pausea") ;
return 0;

1 #include <stdio.h>
2 #include <stdlib.h>

w

4
5 {
6
7
8

(Yo}

10
sl
1152
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27,
28
29! }

int main()

char gender;

printf ("\nChoose:\n"
" m: if you are male\n"
" £f: if you are female\n"
" x: if you are not sure\n") ;

printf ("\nEnter: ") ;
scanf ("%c", &gender);

if (gender="m"')
{ printf("\nCongrats..You are the Man!!\n") ;
}

if (gender=="£")
{ printf("\nWell, you are a Woman\n") ;
}

if (gender=="x")

xd\n",a,b) ;

%d\n",a,b) ;

{ printf("\nOMG..you should check back your gender!!\n") ;

}
system ("pause") ;
return 0;

../../../../Project.New/C/Exercise_16_if_if_b.c
../../../../Project.New/C/Exercise_16_if_if_b.c

Selection Structure (if...else)

* |f-else selection statement : “For example, suppose the passing grade on an exam is 60.”

¢ Pseudo-code:

If student’s grade is greater than or equal to 60
Print “Passed”
else

Print “Failed”

* Csyntax:
if (grade >= 60) {
printf("Passed\n" J;
} /* end if */
else {
printf("Failed\n");
} /* end else */
* Flowchart:

.) false true .
print “Failed” - grade == 60 —_— print “Passed”

Y
o=

An example of if...else statement positive and negative number

1 #include<stdioc.h>
2 #include <stdlib.h>
3
4 int main()
5 {
B int =;
1
g printf("\n Enter a number:");
9 scanf("&d", &3);
10
11 if(a>=0)
12 {
13 printf("\n The number %d is positive.",az):;
14 }
15
16 else
17 {
18 printf("\n The number %d is negative.", a);
19 }
20
21 return 0:
22
231

../../../Project.New/C/Chapter3/Chap3.6_if_else.c

Selection Structure (switch...case)

e switch selection statement :

* Csyntax:

switch (condition)

{
case 1 : statementl; break;
case 2 : statement2; break;
default: statement3;

* Flowchart:

T

T

case a actions(s) ——= break
true _
case b case b actions(s) —= break
false
true .
case = case z actions(s) I—D break
false
default actions(s) l

../../../Project.New/C/Chapter4/Chap4.7_switch.c

Selection Structure (switch...case)

An example of switch: [to switch a color]

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main()
5 {
6 int color;
7 printf ("Please choose a color:\n"
8 " 1. Red\n"
9 " 2. Green\n"
10 " 3: Blue\n") ;
11
12
13 swtoh (colom)
14 T
15 [CESSEE
16 printf ("You chose RED color\n") ;
17 system("color 40") ;
18 break;
e _ Choose between
20 printf ("you chose GREEN color\n") ;
21 system ("color 20v); number 1,2,3 Only”
22 break;
23 [NGEEe 5: . N
24 printf ("you chose BLUE color\n") ;
25 system("color 10") ;
26 break;)
27 [EesEaNLE: I
28 printf ("you did not choose any color\n");
29 }
30
31 system ("pause") ;
32 return 0;
33}
Exercise

Create a program if you;

enter number 1, it will display Sunday
enter number 2, it will display Monday
enter number 3, it will display Tuesday
enter number 4, it will display Wednesday
enter number 5, it will display Thursday
enter number 6, it will display Friday
enter number 7, it will display Saturday

../../../../Project.New/C/Exercise_20_switch_case.c
../../../../Project.New/C/Exercise_20_switch_case.c

Selection Structure (switch...case)

An example of switch: to check a grade!

1 #include <stdio.h>
2 #include <stdlib.h>

3

4 int main()

51

6 char Grade;

7 printf ("Please enter your grade:\o");

8 scanf ("%e", &Grade) :

]
10 switch(Grade)
11 {
12 case 'A'
13 printf("Excellent\n"); —_
14 break;
15 case 'B' ¢
16 printf("Good\n") ;
17 break; Choose between
18 case 'C' : { -) character A,B,C,D,F
19 printf("OK\n") ;
20 break; — Only”
21 case 'D'
22 printf("Mmmmm....\n");
23 break;
24 case 'F' :
25 printf("You must do better than this\n");
26 break; _—
27 defanlt
28 printf("What is your grade anyway?\n");
29 break;

* Cprogramming is case sensitive, so the letter ‘A’ and ‘@’ for case is different. So, to
choice both, even lower case of upper case, just modify the coding by adding both
cases like example:

switch (Grade) il
5 case 'A':
case 'a':

printf(" Excellent\n");
break;

../../../../Project.New/C/Exercise_20_switch_case_b.c
../../../../Project.New/C/Exercise_20_switch_case_b.c

Nested if...else statements

* Nested if...else statements test for multiple cases by placing 1 £...else statements inside
if..else statements.

* For example, the following pseudocode statement will print A for exam grades greater
than or equal to 90, B for grades greater than or equal to 80, C for grades greater than or
equal to 70, D for grades greater than or equal to 60, and F for all other grades.

If students grade is greater than or equal to 90
Print A"
c‘."l."n."
if students gr;r:cf:‘ I5 greater than or :':;rr::.-" o 80
Print “B”
F.':IF-E'
a_r,l"" students ‘__-:;.r'.m"e' i5 greater than or c'q.r:'rr.-" to 710
Prine “C”

EiiE
If students grade is greater than or equal to 60
Prine "D
FII:SE.‘
Print “F”
This pseudocode may be written in C as
if { grade »=)]
printf(IF
el se
if { grade »=]
printf(b H
else
if (grade >= 3
printf(b
else
if (grade ==]
printf(3s
else
printf(I

e Csyntax can be simply as above:

if (expression 1)

program statement 1 RS

else

if (expression 2)

else
program statement 3

program statement 2 \

if (expression 1)
program statement 1
else if (expression 2)
program statement 2

elze

Example:

1 #include «<stdio.h>

2 #include <stdlib.h:

3

4 void main()

sH {

& int Mark;

7

8

g printf{"PROGRAM START!\n");
1@ printf{"Your Marks is :");
11 scanf("%d", &Mark);
12
13 P if((Mark:=3@) &R (Mark<=1ea))
14 Aprintf("Grade A\n");}
15
16 - else if((Mark>=78) && (Mark<s@))
17 {printf("Grade B\n");}
18
19 else if{ (Mark>=c58) && (Mark<72))
20 fprintf({"Grade C\n");}
21
22 else if{ (Mark:=42) 8% (Mark<gg2))
23 fprintf("Grade D\n");}
24
25 else if{ (Mark:=8) && (Mark<4@))
26 fprintf({"Grade D\n");}
27
28 else
29 {printf("0Out of Range\n");}
3@
31
32 system("pause");
33 L1

+ Csyntax: :

if (condition)

else if (condition)

_ - Depend on how
else if (condition) Many condition

) . You want to use
else if (condition)

else

¢ Flowchart:

Statement 1

Statement 2 >

Statement 3

Statement 4

o
-

Syntax:
if (conditionl)
{

statementl

e ad
>

else if(condition2)

{

statement2

else if(condition3)

{

statement3

e ad

else
statement4

Comparison if..else & switch..case

Which statement will be executed
depend upon the output of the
expression inside if statement.

if-else statement uses multiple
statement for multiple choices.
if-else statement test for equality
as well as for logical expression.

if statement evaluates integer,
character, pointer or floating-point
type or boolean type.

Either if statement will be
executed or else statement is
executed.

If the condition inside if
statements is false, then by default
the else statement is executed if
created.

It is difficult to edit the if-else
statement, if the nested if-else
statement is used.

Which statement will be executed is
decided by user.

switch statement uses single
expression for multiple choices.
switch statement test only for
equality.

switch statement evaluates only
character or integer value.

switch statement execute one case
after another till a break statement is
appeared or the end of switch
statement is reached.

If the condition inside switch
statements does not match with any
of cases, for that instance the default
statements is executed if created.

It is easy to edit switch cases as, they

are recognized easily.

Comparison if-statement and Nested if-else-statement

T R T R R N N el =l el R el e =
(ENC Rl = N . T R S YR Ay R T R - S T O S I T- - . RV, I SR PYR Ca

#include <stdio.h>
#include <stdlib.h>

void main()

=

int Mark;

printf({"PROGRAM START!\n");
printf{"Your Marks is :");

scanf("&d", &Mark);

é if((Mark»=88) && (Mark<=188))
Aprintf("Grade A\n");}

g if((Mark:=7@) && (Mark«BE))
{printf("Grade B\n");}

if{ (Mark»=58) && (Mark<7@))
{printf("Grade C\n");}

if{ (Mark»=ae) E& (Mark<ee))
{printf("Grade D\n");}

if{ (Mark>=8) && (Mark<4a))
iprintf("Grade D\n");}

if((Mark<@) || (Mark>1lea))
{printf({"Out of Range\n");}

system("pause”);

R R e el el =l el el el el =
S m W W R R @000 M Wk D00 W W R

28

Nested if else

#include <stdio.h>
#include <stdlib.h>

void main()

(1]

int Mark;

printf("PROGRAM START!%\n");

printf{"Your Marks is :");

scanf("%d", &Mark);

iF((Mark>=38) B& (Mark<=108))
{printf("Grade A\n");}

else if((Mark>=78) && (Mark<3@))
{printf("Grade B\n");}

else if{ (Mark»>=68) && (Mark<72))
{printf("Grade C\n");}

else if{ (Mark»=48) && (Mark<se))
{printf("Grade D\n");}

else if{ (Mark»=8) && (Mark<4e))
{printf("Grade D\n");}

else
{printf("Out of Range\n");}

system("pause”);

Comparison if-statement and Nested if-else-statement

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 void main()

sEH{

[float valuel, valuelZ;

7 char operator;

a3

el printf ("Type in your expression.\n");
1@ scanf ("¥f %c ¥f", &valuel, &operator, &value2);
11

12 if (operator == '+’

13 printf ("¥.2f\n", valuel + valuel);
14

15 else if (operator == '-

16 printf ("¥.2f\n", valuel - wvaluel);
17

18 else if (operator == '*'

19 printf ("%.2f\n", valuel * valuel);
28

21 else if (operator == '/’

22 printf ("¥.2f\n", valuel / valuel);
23

24 system("pause”);

25 L}

Nested if else

switch case

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 void main()

5 1

6 float wvaluel, value2;

7 char operator;

8

9 printf ("Type in your expression. \nexample: operand operator operand. ‘“Wnl + 1W\n");
18 scanf ("%f %c %f", &valuel, Eoperator, &valuel);
11

12 switch(operator)

134 {

14 case '+':

15 printf ("%.2f\n", valuel + value2);
16 break;

17

12 case '-':

19 : printf ("¥.2f\n", valuel - value2);
28 break;

21

22 case '*':

23 ; i printf ("%.2f\n", valuel * value2);
24 break;

25

26 case 'J/':

27 : printf ("%.2f\n", valuel / value2);

28 break;

29

EL] default:

31 ; printf ("Please enter the right value of operand and operator™);
32 break;

33 1

34

35

36

37 system("pause");

33 L}

Looping
Statements

FOR statements
- FOR statements
- Nested FOR statements

. WHILE statement

DO-WHILE statements

[

Y)
S s
R o pPnction 2] 1this, each(fun

B e ALl s, call(this, c):

LR L if .
] v1sible=function

St test(a)7d(a,e)icclat
length| =encodelRIC

else for(c in ajcclc,a

anod his)). filter(function :
il mrray;?m.rnapu:,funcnon

ext Jeateh ()1
function gct/

tryt

r"'ro

Definition of looping or repetition

* Loops provide a way to repeat commands and control how many times they are repeated.

* C provides three types of looping structures in the form of statements.
* for statement
* while statement
* do...while statement

* The main idea of a loop is to repeat an action or a series of actions.

>

An action or a series of actions

The concept of a loop

* But, when to stop looping?

* Inthe following flowchart, the action is executed over and over again. It never stop — This is
called infinite loop

* Solution — put a condition to tell the loop either continue looping or stop.

* Aloop has two parts — body and condition

* Body — a statement or a block of statements that Body

will be repeated.

e Condition —is used to control the iteration — either

to continue or stop iterating.
True

False

* Two forms of loop:
* Pretest loop
* post-test loop

90

Pretest loop |

* Pretest loop

- the condition is tested
first, before we start
executing the body.

- The body is executed if
the condition is true. True

- After executing the body, Body
the loop repeats

y
Post-test loop
* Post-test loop
7

- the condition is tested later, after y

executing the body.

e Body

- If the condition is true, the loop

repeats, otherwise it terminates.
- The body is always executed at \l/

least once.

True

The iterating False

part must be

True
Parts of a loop "
- isused to prepare a loop before it can start —
usually, here we initialize the condition. >
- Theinitialization must be written outside of True Body
the loop — before the first execution of the \J/
body.
Updating
e Updating
- isused to update the condition.
- If the condition is not updated, it always true
=> the loop always repeats- an infinite loop.
False
- The updating part is written inside the loop — 91

it is actually a part of the body.

Loop statements

* C provides three loop statements:

Loop
statements

while for do...while

(pretest loop) (pretest loop) (post-test loop)

Definition
* while loop statement
* A while statement is like a repeating if statement.
* Like an if statement, if the test condition is true: the statements get executed.

* The difference is that after the statements have been executed, the test condition is
checked again.

* [fitis still true the statements get executed again.
* This cycle repeats until the test condition evaluates to false.

* do...while loop statement

* do ... while is just like a while loop except that the test condition is checked at the
end of the loop rather than the start.

* This has the effect that the content of the loop are always executed at least once.

* for loop statement
* forloop is very flexible based on the combination of the three expression is used.

* The counter can be not only counted up but also counted down. You can count by
twos, threes and so on. You can count by not only number but also character.

* Beside the body and condition, a loop may have two other parts — Initialization and
Updating

Pretest loop \l/
» for Initialization

* while ,
True

Body

\
Updating

[

J 92

Post-test loop

do...while

y

Initiali

zation

N

»‘

y

Body

v

Updating

False

* Example: These flowcharts print numbers 10 down to 1

Pretest loop

Ise

Post-test loop

Initialize n before
start the loop

Every time the loop
repeats, n is
updated

Tr

ue

93

Comparison
* while:
* while tests a condition at the beginning of the loop
* condition must first be true for the loop to run even once

* do while:
* do/while tests a condition at the end of the loop
* loop will run at least once

» for:
« for facilitates initializing and incrementing the variable that controls the loop
* Especially helpful for:
* Looping for a known number of times

for looping
The C for statement lets you specify the initialization, test, and update operations of a
structured loop in a single statement. The for statement is created as follows:

for (init exp, cond exp; update exp)
{
loop body statement;

where:
init_exp: is an expression that is evaluated before the loop is entered.
cond_exp: is an expression that is evaluated before each pass through the loop.

update_exp: is an expression that is evaluated at the end of each pass through the loop, after
the loop body has been executed, and just before looping back to evaluate cond_exp again.

The C for statement lets you specify the initialization, test, and update operations of a
structured loop in a single statement. The for statement is created as follows:

C syntax
Contro Required Final value of contral Required
for varizble semicolon variable for which semicolon
keyword name separator the condition is true separator
| !
||II \ l I". /
for (counter = 1; counter <= 10; counter++)
e — —
e T \
I'.
Initial value of Increment of
contral varizhle Loop-continuation control vanable
condition

94

for looping

The C for statement lets you specify the initialization, test, and update operations of a
structured loop in a single statement. The for statement is created as follows:

flowchat
Establish initial -
value of control 1)
variable
counter = 1
|
+_
true . .
counter <= 10 = printf("%d”, counter); —= counter++
o / Body of loop Increment
Determine if final false (this may be many the control
valge of control ' statements) varniable
vanable has been i
reached
1 #include <stdic.h>
2 #include <stdlib.h>
3
4 int main()
51
[int count;
7
8 for (count=1;count<=10;count++)
5 {
10 printf("%d ",count) ;
11
12 }
13
14 system ("pause") ;

Press any key to continue

../../../../Project.New/C/Exercise_28_for_a.c

Example 2 - Display asterisk

1 #include <stdioc.h>
2 #include <stdlib.h>

3
4 int main()
5 {
6 int count:
7
8 for (count=1;count<=10;count++)
9 {
10 printf("* ") ;
11
12 }
13
14 system ("pause") ;
15
il N
1? |} B E\Project.Mew\C\Exercize_28_for_a.exe | = | =] |i3—]
* % ®% * % % @ ¥ % % Ppesz any key to continue
e J
(based on user REQUEST!)
1 #include <stdioc.h>
2 #¥include <stdlib.h>
3
4 int main()
5 {
& int count:
7 int number:;
g
=] printf ("How much star u want??\n");
10 scanf ("%d", &number) ;
11
12
13 for (count=1;count<=number;count++)
14 {
15 printf("* ") ;
16
17 }
18
15 system ("pause") ;
20 return 0;

21 Y 5 EX\Project.New\C\Exercise_28 for_b.exe

How much star

2
2

../../../../Project.New/C/Exercise_28_for_b.c

Example 4 - Display sin(x)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4

5 int mainl()

6 {

7 float count:

g

g printf ("x\tsin(x)\n") ;
10 printf("-\t-——-———- \n") ;
11

12 for (count=0;count<=2.0;count=count+0.1) //simplified count+=0.1
13 {

14 printf£("%0.2E\t%f\n", count, sin(count)) ;
15

16 }

17

18 system ("pause") ;

19 return 0;
20 }

SRl |

B E\Project.Mewh\C\Exercise_28_for d.exe |ilﬂl-£—hj

sintxd

0. 8pBBaa
a.899833
B.198669
B.295528
A.389418
B.479426
B.564642
A.644218
B8.717356
8.783327
B.841471
8.8912@7
B8.932083%
B.963558
B.985458
8.997495
A.999574
B.991665
B.973848
8.946308
Prezsz any key to continue . . .

whilelooping

. The while loop can be used if you don’t know how many times a loop must run
(sometimes) until the condition is met. The statement of while is:

while(condition)
{ Code to execute while the condition is true }

. statement : “For example,
* Pseudo-code:

while product is below than 100
repeat product with three (3)

* Csyntax:
product = 2;
while (product <=) {
product = * * product;
} end while *
* Flowchart:
P
v

true
product <= 1000 ~— product=2 * product
fa\se}

— Display 20 to 0. (Decrement numbers)

clude <stdio.h>

1 #in

2 #include <stdlib.h>

3 #include <math.h>

4

5 int main()

e {

7 int count:

8

9 count = 20;

10

11 while(count>=0)

12 { printf("3d ",count):;

13 count=count-1;

14 }

15

16 system ("pause") ;

17 return 0;

18 } r - . .
Aol B ' E\Project.NewMC\Exercise_29_while_a.exe

?8 17 18 17 16 15 14 13
any key to continue . . .

../../../Project.New/C/Chapter3/Chap3.7_while.c
../../../../Project.New/C/Exercise_29_while_a.c

— We add 0+1+2+3+4+5+6+.....+100

1 #include «<stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4

5 int main()

6 {

7 int count;

a int sum;

9

10 sum = 0;

11 count = 07

12

13 printf ("No.\tSum\n") ;
14 while(count<=100)
15 {

16 sum = count + sum;
17 printf ("#d\t%d\n", count, sum) ;
18 count=count+1;

19 }
20
21 system ("pause") ;
22 return 0;

23
~a } 1 | E\Project.New\C\Exercize_29_while_b.exe | = | e e

../../../../Project.New/C/Exercise_29_while_b.c

do. .while looping
. statement :

* Csyntax:

do {
statement
} while (condition);
* Flowchart:

0
l

action(s)

'

condition

{a\sj)

true

Example 1 - count to 10

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main()

5 {

& int count=-10;

7

B do

9 {
10 printf ("%d\n", count) ;
11 count++; .
12 1 " E\Project.New\C\Exercise_30_do_while_a.exe |_|_|_J':' E] | e
13 }while (count<=10) ;
14 it
15 system ("pause") ; E
16 return 0;
17 }
18

Press any key to continue . . .

~ — 100

../../../Project.New/C/Chapter4/Chap4.8_do_while.c

* Difference between while and do while loop

* The do while statement is similar to the while statement except that its
termination condition is at the end of the body of the loop only. Thus, you want to
use a do statement, if you want to perform the body of the loop at least once,
regardless of the condition.

nested for

* A for loop inside another for loop is called nested for loop.

* Syntax of Nested for loop:

Flowchart of Nested for loop

Initialization

Increment/

Decrement

Increment/
Decrement

Statements

End for

nested for

* Example 1: C program to print all the composite numbers from 2 to a certain number
entered by user.

#include<stdio.h> Output
#include<math.h>
int main()
{ L Enter a number:15
int i,j.n;
printf{"Enter a number:"); 4 Is composite
scanf("%d",&n); 6 is composite
for(i=2;i<=n;i++) 8 is composite
{ 9 is composite
for(j=2;j<=(int)pow(i,0.5);j++) 10 is composite
{ — 12 is composite
if(i%j==0)

L 14 is composite
printf("%d is composite\n",i); 15 is composite
break;

¥

b
L
return 0;

* Example 2: C program to print multiplication table from 1 to 5

1

2 * C program to print multiplication table from 1 to 5
4 | #include <stdioc.h>

5

6 | int main()

71 {

8 Loop counter variable declaration

9 int i, j;

18

11 * Quter loop */ =
12 for{i=1; i<=18; i++) 2
13 { 3
14 /* Inner loop */ 4
15 for(j=1; j<=5; j++) L
16 {

17 printf("%d\t™, (i*j)); :
18 1 7
19 a
28 /* Print a new line */ g
21 printf("\n"); 18
22 1

23

24 return 8;

25 | 1

Flowchart for Example 2

Start

Y

declare |, j

display i*]

i++

jH

End for (j)

display "\n"

Jump Statements

BREAK statements

CONTINUE statement

RETURN statements

GOT - ataye: i caes
O statements MY e b s nsertBefore(this #
et e i (this) . wraplnner
S e wrAlLia e, call(this, c) et
N e ol if ‘
L Al ;
Tt

ible=function(1: {return
d(a,e):cclat’ [+
lmth encodeURIComponent

else forlc in ajccic,alcl return
this)) . filte functmn var this
{sArray(c)?n.mapic, function(a) {reters

return nev

X chi
functmn gc‘ try

1M
rtBefore T
function
§

Jump statements

* In addition to the sequence, repetition and selection, C also provides jump statements.

* The statements allow program control to be transferred from one part of the program to

another program unconditiona
* There are four jump statement

Ily.
s:

Jump

Statements

| | | |
break | continue | return | goto I

break statement

Break statement—The break statement in C programming language has following two

usage:
. When the break statement is encountered inside a loop, the loop is immediately
terminated and program control resumes at the next statement following the loop.
. It can be used to terminate a case in the switch statement (covered in the previous
chapter).

* It causes a loop to terminate

Example:

for (n=10; n>0;
{

if (n<8) break;
printf (“%d ”,n);
}

n=n-1)

Output:

10 9 8

* It performs a one-way transfer of control to another line of code;

* The set of identifier names following a goto has its own name space so the names

do not interfere with other identifiers. Labels cannot be redeclared.

105

../../../../Project.New/C/Exercise_28_for_f.c

lude <stdio.h>
lude <stdlib.h>

inc

in

FEk Frimetian main Rerrine m e e m . B T

int main (veid)

0 =1 U0 s L B

{
9 int counter; /* initialize counter */
10
11 for(counter = 1; counter <=20; counter++){
12 if(counter==8)
13 break:
14
15 printf("%¥d ", counter):;
16 }
17
18 printf("\n\nBreak is at number %d",counter);
19
20 print£("\n\n");
21 system ("pause") ;
22 return 0;
23}
24

continue statement

Continue — The continue statement in C programming language works somewhat like the
break statement. Instead of forcing termination, however, continue forces the next
iteration of the loop to take place, skipping any code in between.

* The continue statement, when executed in a while, for or do...while statement, skips the
remaining statements in the body of that control statement and performs the next
iteration of the loop.

1 //program to show CONTINUE

2

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 /* function main begins program execution *#,
7 int main (void)

g {

9 int counter; /* initiaslize counter */
10

11 for(counter = 1; counter <=20; counter++) {
12 if (counter==8)

13 continue ;

14

15 printf("%d ",counter);

16 }

17

18 printf ("\n\nNumber is skip at integer 8",counter):;
19
20 printf ("\n\n") ;
21 system ("pause") ;
22 return 0:
23}

106

continue statement

{

if (n%2==1) continue;
printf (“%d ”,n);

}

for (n=10; n>0; n=n-1)

Output:

10 8 6 4 2

Continue examples using for statement and while statement :

Example:
#include <stdio.h> #include <stdio.h>
void main () void main ()
{ {
int n; int n;
for (n=10; n>0; n=n-1) n = 10;
{ while (n>0)
if (n%2==1) continue; {
printf (“%d ”,n); printf (“%d ”,n) ;
} if (n%$2==1) continue;
system (“pause”); n=n-1;
} }
system (“pause”) ;
}
Example:
n = 10;
while (n>0) Output
{

printf (“%d ”,n);
if (n%2==1) continue;
n=n-1;

}

The loop then prints number 9
over and over again. It never
stops.

107

continue statement

Example:
n = 10; Transferto_t.he
while (n>0) loop condition
{

printf (“*%d ”,n);
if (n%2==1) continue;
n=n -1;

}

start

false

false

stop

108

goto statement

goto - The goto statement is used to alter the normal sequence of program execution by
transferring control to some other part of the program unconditionally. In its general
form, the goto statement is written as goto label;

where the label is an identifier that is used to label the target statement to which the
control is transferred.

* goto statement:
* It performs a one-way transfer of control to another line of code;

* The set of identifier names following a goto has its own name space so the names do
not interfere with other identifiers.

¢ Labels cannot be redeclared.

1 //program to do switch statement
2
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main (int numeric)
71
g
S value:
10 printf ("Enter the integer wvalue between 1 to 5:\n\n");
11 printf ("1l : For Blue Foreground\n") ;
12 printf ("2 : For GREEN Foreground\n") ;
13 printf("3 : For RED Foreground\n") ;
14 printf("4 : For PURPLE Foreground\n") ;
15 printf ("5 : For YELLOW Foreground\n") ;
16 printf ("6 : To CLEAR SCREEN\n") ;
17 printf ("7 : For EXIT\n");
18
19 printf("\nYour value is:");
20 scanf ("%d", &numeric) ;printf ("\n") ;
21
22 switch (numeric) {
23 case 1: printf ("\nBLUE\n\n") ;
24 system("color 10");
25 break;
26 case 2: printf ("\nGREEN\n\n") ;
27 system ("color 20");
28 break;
29 case 3: printf ("\nRED\n\n") ;
30 system ("color 40");
31 break:;
32 case 4: printf ("\nPURPLE\n\n") ;
33 system ("color 50") ;
34 break:;
35 case 5: printf ("\nYELLOW\n\n") ;
36 system ("color 60");
37 break;
38 case §: system("cls");
39 break;
40 case 7: goto exit;
41 break;
42
43 default:printf ("\nWrong Number!..\nplease enter the integer wvalue between 1 to 5\n\n");
44
45 }
46
47 goto wvalue;
48
49 exit:
50 system ("pause") ;
51 return 0;
52 }

109

1 #include <stdio.h>
2 #include <stdlib.h>

3
4 void main()
51 {
6 int pilih;
7
8 value:
] printf ("\nl.merah\n") ;
0 printf ("2.biru\n") ;
11 printf ("3.kuning\n") ;
.2 printf("4d.exit\n");
= printf("sila pilih no brp:");
4 scanf ("%d", &pilih);
5
.6 switch (pilih)
7 {
.8 case 1:
19 printf ("awak pilih merah\n") ;|
20 break;
21 case 2:
22 printf ("awak pilih biru\n") ;
23 break;
24 case 3:
25 printf("awak pilih kuning\n") ;
26 break;
27 case 4:
28 goto exit;
29 break;
30 default:
31 printf ("\nsalah pilih. pilih balik ") ;
32 }
33
34 goto value;
35 exit:
36 system ("pause") ;
37

38}

Function

Functions

* A function is a group of statements that together perform a task.

* Every C program has at least one function, which is main(), and most programs can
define additional functions.

* You can divide up your code into separate functions, where each function performs a
specific task.

* A function declaration tells the compiler about a function's name, return type, and
parameters.

* A function definition provides the actual body of the function.

Types of function Function
* There are two type of function:- g </>

a. Predefined function

set of
steps

b. User-defined function action

a) Predefined function

¢ Predefined functions are functions that have been written and we can use them in our
C statements.

* These functions are also called as 'library functions'. These functions are provided by
system. These functions are stored in library files. Example:-

* scanf()
e printf()
* strcpy
e striwr
e strcmp
* strlen
* strcat

b) User-defined function

* The functions which are created by user for program are known as 'User defined
functions'.
* Advantages:
* |tis easy to use.
* Debugging is more suitable for programs.
* It reduces the size of a program.
* ltis easy to understand the actual logic of a program.
* Highly suited in case of large programs.

* By using functions in a program, it is possible to construct modular and
structured programs.

113

User-defined function

Syntax:

void main ()

{
/ Function prototype
<return type><function name>([<argu list>]);
/ Function call
<function name> ([<arguments>]);
b
// Function definition
<return type><function name>([<argu list>]);
{
<function body>;
}

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

void add(); //function declare

void add()
3 {
int a,b,c;
system("cls");
printf("\nEnter Any 2 number: ");
scanf("%d %d", &a,&b);
c=a+b;
printf("\nAddition is : %d\n\n", c);
system("pause");

- }
void main()
3 {
add();
add();
add();
getch();
}

Enter Any 2 Numbers

Addition is : 29

114

Three steps in using functions

1. Declare the function:
* Known as function declaration or function prototyping.
* Write a function prototype that specifies:
— the name of the function
—the type of its return value
— its list of arguments and their types

2. Define the function:
* Known as function definition or function implementation.

* Write the block of statements (body) of the function to define processes should be
done by the function.

3. Call the function:
¢ Known as function call or function invocation.
¢ Call the name of the function in order to execute it.

Figure : Declaring, calling and defining functions

Declaration is
coded first

aration * ‘ ; A
void greeting (void):

main is the calling - 5 . o | greeting is the
int main (void) / function :o'd greeting (void) called function

| L
* " / rintf("Hello World!");
tatements v s :

greeting {); | /* greeting */
-

Definition is
after the call

* Proto cC

Bhck to the
calling function

Call is in
statement section

{

Back to Operating System

« A called function receives control from a calling function.
» When the called function completes its task, it returns to
the calling function.

+The function main() is called by the operating system (OS).
When it is complete, control returns to the OS

Functions

A

With Arguments Without Arguments

No parameters included.

nassed during

function call

Eg:

/f declaration
[/ declaration int display();
int sum (int x, int y); /f call
[/call display(});
sum(10, 20);

FUNCTIONS

* there are five types of functions and they are:

1. Functions with no arguments and no return values.
Functions with arguments and no return values.
Functions with arguments and return values.
Functions that return multiple values.

Functions with no arguments and return values.

g 9 D

1. Functions with no arguments and no return value.

Control Passing I
void functionl () b eereecncnseencanned void function2()
{ No Argument Passing {
function2 (); O i
No Return Value }
}
Control Passing f
Calling Function Called Function

#include<stdio.h>

#include<conio.h>

void printline ()
(
int i;
printf ("\n");
for (1=0;1<30;1++)
(M C:\TCWIN45\BINWONAMEOT.EXE [M[m] B
printf ("-"); Welcome to function in C i’

}
printf ("\n"); = —————

void main () LI_I

clrscr();

printf ("Welcome to function in C");
printline();

printf ("Function easy to learn.");
printline();

getch () ;

2. Functions with arguments and no return value.

Control Passing
void function1 ()

{

function2 (10, 20);

Argument Passing

SARRRRAARR R No R.turn v.lu.

}

Control Passing

Calling Function

void function2 (int
X, inty)
{

AEREERERARERARA RN

}

Called Function

#include<stdio.h>

#include<conio.h>

void add(int x, int y)
{
int result;

result = x+y;

printf ("Sum of %d and %d is %d.\n\n",x,y,result);

void main ()

{

clrscr();

Bl CATCWIN4S\BINYNOMAMEO1 . EXE

Sum of 38 and 1% is A45.
add (30,15) ;

add (63, 49) ; Sum of 63 and 49 1s 112,

add (952,321); Sum of 952 and 321 is 1273.
getch () ;

) 4l |

3. Functions with arguments and return value.

Control Passing
int function2 (int x, int

void functionl ()

{ y)
Argument Passing {

r.wh :fun“lonz (10' PEL LT T T P
20); return(z);

Returning Value

Cesssssnssnsinnnbhen

Serssnssrearrarnnar e

| Control Passing

#include<stdio.h>

#include<conio.h>

int add(int x, int vy)
{

int result;

result = x+ty;

return (result) ;

|

Result BG. i

void main ()

{ Result 1273.

int z;

4| |
clrscr();

z = add(952,321);

printf ("Result %d.\n\n",add(30,55));
printf ("Result %d.\n\n",z);

getch ();

4. Functions with no arguments but returns value.

Control Passing

void function1 () int function2()

{ {

LA R R R R R R RERRERRERERRSRN)
No Argument Passing

P T PLL TP

return(z);

result = function2();

B T
AEEssERRERARRREE AR .

} }

Control Passing

#include<stdio.h>

#include<conio.h>

int send{()

{
int nol; B C:\TCWIN45\BINWWONAMEO 1. EXE [H[=] B}

printf ("Enter a no : "); Enter a no : _ iI
scanf ("%d", &nol) ;

return (nol) ; -

| o | B

B CATCWIN45\BINYHONMAMEO1 . EXE =
Enter a no : 5.

void main ()

{

You entered : 5.

int z;

clrscr(); 4| |

z = send();

printf ("\nYou entered : %d.", z);

getch () ;

5. Functions that return multiple values.

#include<stdio.h>

#include<conio.h>

void calc(int x, int y, int *add, int *sub)

{

*add = x+y;

*sub = x-y;

void main ()
{
int a=20, b=11, p,q;
clrscr();
calc(a,b, &p, &q9) ;
printf ("Sum = %d, Sub = %d",p,q):;
getch () ;

Declaring a function

return_ type function name (formal parameter list);

* The syntax of a function declaration (formally called prototype) contains:
— The type of the return value of the function
» if the function does not return anything, the type is void
* if return_type is not written the Compiler will assume it as int

— The name of the function
* same rules as for variable naming

— A list of formal parameter made up of its names and its types.
They are enclosed in parentheses

— The prototype must be terminated by a semicolon

* Function prototypes are usually written between the preprocessor directives and main().

Examples of function prototypes

e float avrg(int numl, int num2, int num3);

* Function avrg takes three integers as parameters and returns a floatingpoint
value.

* void mix(double numl, int num2) ;

* This function receives a double and an integer value as parameters. But, it does
not return any value.

* void greeting(wvoid);
* This function does not receive any parameter and also does not return any value.

* calculate();
* The return type and the formal parameters are not written.
* This function does not receive any parameter. It returns an integer value.

122

Defining a function

* The syntax of a function definition is:

function header

\
{

statements;
return an expression;

(formal parameter_ lis

The header is similar to

— function prototype but no semicolon
body

If the return_type is not void, the function must

have a return statement.

But, if the return_type is void, the return statement is optional or just put return;
(without an_expression)

Calling a function

* The name of a function is called in order to execute the function.

* A called function receives control from a calling function.

* When the called function completes its task, it returns to the calling function.

* The called function may or may not returns a value to the calling function

Functions that return a value can be used in an expression or as a statement.

Example:

if given function defintion as below:
float avrg(int a, int b, int c)

{
return (a+b+c)/3.0;

All function calls below are valid
result = avrg(l,2,3) + avrg(4,5,6); // function calls are

// used in an expression
avrg(l,2,3); // function call is used as a'statement

printf (“The average is %.2f”, avrg(l1,2,3));

123

void function cannot be used in an expression because it does not return any value. It can
only be used as a statement.

Example:

if given function defintion as below:
void greeting(void)
{
printf ("Hello") ;
return;

}

Function call below would be an error

result = greeting(); // Error! greeting() is a void
function

* Formal parameters are variables that are declared in the header of the function definition
* Actual parameters are the expressions in the calling statement

* When making a function call, the formal and actual parameters must match exactly in type,
order and number.

* The parentheses is compulsory, even when no parameters present. This is the way, how the
compiler knows an identifier either it is a function or a variable.

* Example:
greeting; // Error. greeting is a function.
//So, it must have the ()
// eventhough no parameter present

Figure : void function with parameters

* Prototype Declartion *
void printOne (i x)
int main (vosd)

* Local Defination

int a=§;

* Statements ¥
printOne (a):
retum {;

| /* ma Call

void primtOne (int x)

-~ I—b—- é ——ID

4
printf{ "%adn”, x)
redum ;

} " prin

Nothing is retumed
to the calling function

Figure : Function that returns a value

Function that calls itself is known as recursive function

Call

* Prototype Declarations */
int sgr(int x);
int main (void)
|
ynt a;
int by
scanf{"%6d", &a).
b = sqr(a);

retuen 0

W /*

8 »
H main

printf{ "%ed squared: %d'n”, a. h);

Returned value
here

mt sqr (i x)

!
'

/* Statements */
return (X * x);

b M sqr®

Example:

int factorial (int n)

{
if

(n>1)

return 1;

}

This function calculates the factorial of n,

n!'=nx(n-1)x(n-2)x..2x1

At the first statement of the function definition, the function calls itself.

return n * factorial (n-1);

125

return statement

* A function returns a computed value back to the calling function via a return statement.
* A function with a non-void return type must always have a return statement.

* Code after a return statement is never executed.

The following function always returns 10.

int square (int n)
(This line causes the control

/— back to the calling function and
return 10; ignores the rest of lines.
n=mn* n;\

P These two lines are ignored

. Y
return n; and never executed

}

Return Statrement

Return value
Calling function

value

Local & global variables

Local variable is a variable declared inside a function.
— This variable can only be used in the function.

* Global variable is a variable declared outside of any functions.

— This variable can be used anywhere in the program

the program

- L
Accessed within
{ Accessed throughout } L a block or function

Global Variable Local Variable

Example: Local vs. Global

#include<stdio.h>
void print number (void) ;
p is declared outside of all

int p;<- functions. So, it is a global
variable.

void main (void)

{

g is declared inside the

int g = 5;/ function main. So, it is a

local
printf (“q=%d” , q/ OCa

variable to the function.
p=10;

print_number ()7

p can be used anywhere

void print number (voi
{
printf (“%d”,p) ;
qg=4qg+ 5;
Error! g can only be used in

the function main, because it
is a local variable

s

127

Example: Local vs. Global

#include<stdio.h>
double compute_ average (int numl, int num2);

void main (void)

{ Same variable names?!?
--it’s OK; they’re local to
double average; their functions. Compiler treat

int agel = 18, age2 = 23; them as different variables.

average = compute_average (agel, age2) ;

return 0O;

-
double average (int-numl, int num2) \ U-UL
{

double average;
average = (numl + num2) / 2.0;

return average;

}

Scope

* Scope determines the area of the program in which an identifier is visible (ie. the identifier
can only be used in that area)

* Remember, identifier can be a variable, constant, function, etc.

* Examples:
— Scope of a local variable : only in the function body where t was declared.
— Scope of a global variable : everywhere in the program.

* Scope that enclosed in { } is called a block.

* Inner block can use identifiers that were declared outside of it.
— eg. Any function can use any global variables.

¢ But outer block cannot use identifiers that were declared in inner block.

* Any block cannot use any identifier that was declared in other block.
— eg. You cannot use any local variable from a function in another function.

128

j.- This is a samplc 10 demonsirase scope, The jechniques

uscd in 1hss program should sever be ascd in praciice,
.

#include <stdio.h> --
int fun (int a. int b); Global area

int main ¢ void)
H

int a; main’'s area
int b:
floar c;

1 '* End of Main *

int fun {ini1 &, 2
int j) fun's arca
H
inl @
inl »;

Example: Scope of inner and outer block and function

#include <stdio.h> Ilifﬂld fun (veid)
void fun(woid); a=2+5=7 i——i:!.l‘lt a =h +5;
— int a=1 , b=2: int b=1;
vold main (void int (ta=%d" :
¢) output: a=F |- pI:-Ln ("a ra)
{ A4 outer block h= —&print |:“b=%d",-b]':-

p int k=3, c=4:
print (“c=%d4",

N
: :

» fun(): 1

p-orintt (ta=%d",a); | output: a

il
-

Error! Vanable c was declared in

the function main. It cannot be
used outside of the function.

output: =4
=5
d=3 + 10 =13
) . m am . Error! Variable d was declared in
} printf ("a=a", 4} 40 1 | the inmer block. It cannot be used

in the outer block.

129

Parameter Passing

To call a function, we write its name and give it some information which are called
parameters.

Giving information to a function call is called parameter passing.

You have learnt these:
— formal parameters — parameters that are used in function definition
— actual parameters — parameters that are used in function call

In order to pass parameters, the actual and formal parameters must match exactly in type,
order and number.

— Eg. If you have defined a function with its formal parameter as an “output parameter”,
you must use the ampersand (&) for its actual parameter when you call the function.
Otherwise you will get a syntax error “Type mismatch”,

Two types of passing:
— Pass by value
— Pass by reference

Pass by Value

* When a data is passed by value, a copy of the data is created and placed in a local
variable in the called function.

* Pass by value does not cause side effect.
— After the function call completed, the original data remain unchanged.

Prototvpe Declarations

void fun (int num1):

int main (void)

W
(«—'
b— — = = i p

“ Statements
fun (a) The content of
printf{"%d\n", variable a is copied
\ The valus of ais then placed into
unchanged. Passing parameter x
return 0] by value does not

\ S bl cause side effect
L)

@

—t v O Tun (int x) IE]

* Statements
_. X =Xx + 3: x=5+3=8
— return;

i * Tun*®

\\
Only a c?w/

130

Figure : Pass by value

Pass by Value

* You have been introduced with the term “input parameter”. This type of parameter is

passed using “Pass by Value”.

* When passing an expression, the expression is evaluated first, then the result is passed to

the called function.

Passing expression by value

void fun (int num |);

int main (void)

'* Local Defninttions %/
int a= 5;
+ Statements ¢

j fun(a=+=3)
printf("2%d\a", a);

return O
i /* main *

f* Prototype Declarations ¥/

The expression is
evaluated first. Then the
result is copied and
placed into parameter x

—p-| vOid fun (int x)

:

f* Statements */
return

} /% fun*/

!

Examples (Pass by Value)

Syntax:

// Declaration
void <function name>(<data type><var nm>)

// Calls
<function name>(<var nm>);

// Definition
void <function name>(<data type><var nm>)

{
<function body>;
}
Examples (Pass by Value)
Program :

/* Program to demonstrate function call by passing value.
Creation Date : 24 Nov 2010 12:08:26¢ AM
Author : www.technoexam.com [Technowell, Sangli] */

#include <stdio.h>
#include <conio.h>

void printno (int a)
{
printf ("\n Number is : %d", a); o
1
void main ()
{
int no;
volid printno (int);
clrscr();
printf ("\n Enter Number : ");
scanf ("%d", &no);
printno (no) ;
getch();

Pass by Reference

Passing by reference is a passing technique that passes the instead
of its value.

—That’s why it is also called Pass by Address

Pass by reference causes side effect to the actual parameters.

— When the called function changes a value, it actually changes the original variable in
the calling function.

Only variables can be passed using this technique.

The formal parameter must be a pointer.

Example:

void fun(int *x) // x is a pointer variable
{

// function body

}

* The actual parameter must be an address of a variable.
Example:
int n;
fun(&n); // &n means “address of variable n”

4_..--"" 1,“- Pass by Reference

“ﬁﬂ('Functlon definition to swap the wvalues */
void swap(int *x, int *y) {

int temp;
temp = *x; /* save the value at address x */
*x = *y; /* put y into x */

y = temp; / put temp into y */

return;

133

Pass by Reference

i‘[,ﬁ
\‘(E.-M-L"' nclude <stdio.h>
~——

int main () {

/* local variable definition */
int a = 108;
int b = 200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);

/* calling a function to swap the values */

swap(&a, &b);

printf("After swap, value of a : %d\n",
printf("After swap, value of b : %d\n",

return @;

}

void swap(int *x, int *y) {
int temp;

temp = *x; /* save the value of x */
*X = *y; /* put y into x */

y = temp; / put temp into y */

return;

oo
Nt Nt

b .

) Vitstne) (} Tolitns') &
i

ol
procss. e BUSTIC M,

{
sz
fe: s rate. gy s 10 35
ey {

s, gt lterf)

.St comit ‘ot g,
h

tisan iy « e
h

g) {
L AT ep——
<yt S

A (e, gt ==)
et falge
]

st uy =]
el |

P e atalit 1] i)

et army

el)
1f (o)
]
f b ot e g

i mm[t].m.w,-:fmn_hm o
1

" filg

Pl (nlag) {
1f k)

ot dfet - it g, ¢
ey lelly

h

I g e g
T],y
)

L™
b

'wlnmmfﬂzlm U

P S
01 gy

T

Concept of an array

An ordinary variable can only contain a single value.

An arrayis a
are stored in a sequential location.

Example:
numbers, numbers[0]
numbers1 numbers[1]
numbers2 numbers[2]
numbers18 numbers[18]
numbers;19 numbers[19]

numbers
(a) Subscript form
Terms

I

. These values

numbers

(b) Index form

cores [0]

23

scores [1]

45

scores [2]

12

N

scores [3]

67

C Elements scores [4]

95

/T

scores [5]

45

scores [6]

56

7

scores [7]

scores [8]

* Asingle value in an array is called an element.

* Anindex (or a subscript) is a reference of an element
* Itisaninteger number
* Index 0 refers to the first element

34

scores

Name of
the array

136

Using arrays

* Two things to do when using arrays:
* Declaration and definition of arrays
* Accessing elements in arrays
» for putting values
* for getting values

Declaring and defining Arrays

* Since an array is a variable, it must be declared and defined before it can be used.

* Declaration and definition tell the compiler:
* the name of the array
* the data type of each element
* the number of elements in the array

Syntax:

data type variable name([n]; // n = number of elements

Examples:

int scores [9];

[0] [1] [2] [3] [4] [5] [6] [7] [8]

type of each scores

element

char name [10];

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

name of

the array name
float gpa [40]; oo
[0] [1] [2] [37]38]39]
number of gpa

elements

137

Declaring and defining Arrays
Like ordinary variables, arrays may also be initialized:

int numbers [5] = {3.7,12,24,45}; int numbers [| = {3

|3|7 |12|24|45I |3 |7 |12|24|45I

(a) Basic initialization (b) Initialization without size

int numbers [5]=/{y}; int lotsOfNumbers [1000] = n {0};

The rest are

filled with Os All filled with 0s

(c) Partial initialization (d) Initialization to all zeros

Accessing elements in arrays

* We use an index to access an element from an array.

* The index must be in a valid range

* The following example would be an error —array A has only 2 elements, but we try to
access the third element which is not exist.

int A[2];

A[2] = 100; // this line would an error

* We access an element for two purposes:
* assigning new value into it
* getting its current value

Assigning values into elements

Examples:
1.

5.

Assigning a new value into the 2nd element of array A.

int A[] = {1,3,5,7};
A[1l] = 100;

Incrementing the value of 3rd element of array B.

int B[] = {11,23,35,47};
B[2]++;

Assigning each element of array C with a value that is twice its index

int C[9];

int i;

for (i=0; i<9; i++)
C[i] = i*2;

Assigning each element of array D with a value that is read from the keyboard

int D[5];

int 1i;

for (i=0; i<5; i++)
scanf (“%d” ,&D[i]) ;

The following example would be an error — elements of an array must be
assigned individually.

int E[4];
E = {10,20,30,40}; // this would be an error

// solutions: - assign them individually.
E[0]=10;
E[1]1=20;
E[2]=30;
E[3]=40;

139

Getting values from elements

Examples:
1. Assigning variable n with the value of first element of array A.
int A[] = {1,3,5,7};
int n;
n = A[0];

2. Printing the second element of array B
int B[] = {10,30,50,70};
printf (“%d”, B[1l]);

3. Assigning the first element of array C with the value of the second element,
int C[] = {11,23,35,47};
c[o] = C[1];

4. Printing all elements of array D
int D[]={1r4131617181910/2};
int i;

for (i=0; i<9; i++)
printf (“%d\n”, D[i]);

* Passing an element of an array to a function can be in two forms:
- Pass by value - pass its content:
eg. printf (“%d”, A[2])
- Pass by reference - pass its address.
eg. scanf (“"%d”, &A[2])

~e

Passing the whole array to a function can only be done by using pass by
reference.

- ltis actually passes the address of the first element.

Example:

void increase(int x[3])
{ x[0] += 1;

x[1] += 2;

x[2] += 3;

void main (void)

{
int A[3]={10,20,30};
increase(dA); // or, increase(&A[0])

Summary

Array declaration:

int B [20]; []meansarray
20 means 20 element/ 20 box
B

array

char GRED [10];

Array of char only

Reference

[0] 1%telement

[N-1] last element

assess the initial array
int B[5];
B[5]={26,3,6,107,20};

int B[5]={26,3,6,107,20};

26 3 6 | 107 | 20
(0] (11 [2] [3] [4]

» C allows a character array to be represented by a character string rather than a list of
characters, with the null terminating character automatically added to the end. For
example, to store the string "Merkkijono", we would write:

char string[] = "Merkkijono";
OR
char string[] = {'M', 'e', 'r', 'k', 'k', 'i', 'J',

14
lol, an, 'O', I\OV};

I M] r k k i j] n o |0 I

String "Merkkijono" stored in memory

To read/print array using looping:

* Read:
for (i=0; i<5; i++)
{
scanf ("sd ", &A[i]);
}
* Print:
for (i=0; i<5; i++)
{
printf ("%d ", A[i]);
}

142

' ,—h:“\

/J “-ﬂﬂiiji

uaq:iwr-;

ginclude <stdio.h>

void increase(int x[3])

{

x[0] += 1;
x[1] += 2;
x[2] += 3;

}

void main (void)

{

int A[3]={10,20,30};
int 1i;

(1=0; 1<3; 1i++)

printf ("\n");
increase (A) ;

// or,

for (i=0; 1<3;

printf ("sd ", A[i]);

printf ("sd ",

' ,—h:'“\

53
yeanrty

‘l
H“{(M?

©~ #include <stdio.h>

void main ()

{
char word[20];

word[0] = '"H';
word[l] = 'e';
word[2] = '1"';
word([3] = '1"';
word[4] = 'o';
word[5] = 0;

printf ("The contents of word[]

A[i]);

increase (&A[0]) ;

i++)

|

Another Function:

vold increase(int x[3])

output:

i ° "Di\Programming C\array\Debug\array.exe”

10 20 30
11 22 33 Press any key to continue

Array is use looping. If not:
printf ("%d ", A[0]);
printf ("%d ", A[l]);
printf("sd ", A[2]);
output:
f # ° "DAProgramming C\array\Debug\array.exe" @M‘

The contents of wordl] is -—>Hello
Press any key to continue

is. ==>%s\n",

word

143

' ,—h:“\

‘4 “—‘vﬂ:l
Cysantt

L -'M:#f]ilclude <stdio.h>

“{:w-“'

volid main ()

{

char dayl

char day2
char day3

char day5

[
[
[
char day4]|
[
char dayé]|
[

char day7

o
]
'_l
5
=
Hh
lw]
4]
<
o s W N

Multi-Dimensional Arrays

= "Tuesday";

output:

"Sunday";
"Monday";

= "Wednesday";
"Thursday";

"Friday";

"Di\Programming C\array\Debug\array.exe"

is—->Sunday
is——>MHonday
is——>Tuesday
is——>Hednesday
is——>Thursday

is-—>Friday
is-->Saturday
any key to continue

"Saturday"; L

is-->%s\n", dayl
is-->%s\n", day2
is-->%s\n", day3
is-->%s\n", day4
is-->%s\n", day5
is-->%s\n", dayé
is-->%s\n", day7

* 1-D array can also be extended to Multi-dimensional Array

* Multi-Dimensional array allows us to handle all these using a single identifier

* Multi-Dimensional Arrays:-

¢ Two Dimensional ARRAY
¢ Three Dimensional ARRAY

(01 (1] [2]

[01 (1] 2] [3]

[0]

[1]

(2]

2]
1
[0] 11

[0]
(1]
(2]

(3]

[0 (11 2] 3] [4]

144

Two-Dimensional Arrays

* The two-dimensional array can be defined as an array of
arrays.

* The 2D array is organized as matrices which can be
represented as the collection of rows and columns.

* The two dimensional (2D) array in C programming is also
known as matrix.

* A matrix can be represented as a table of rows and

First Dimension
(rows)

columns. 0o 2 3
Second Dimension
(columns)
Array type Array name
\ Array dimension = 2
51,52,53 |«— Row 1
B = ‘ Int b[2][3] = {(51, 52, 53),(54, 55, 56)};
54, 55, 56| | «— Row 2 /'
TWO rows Firstrow second row

/TN

Col1 Col2 Col3

Algebraic notation

Three columns

C notation

* Two-dimensional (2D) arrays are indexed by two subscripts, one for the row and one

for the column.

* Example:
rating \
fOW ?O/ \ movie (second index)
VY 0 1 2 3
rating[0][2] = reviewer 0| 4 | 6 | 2 | 5
rating[1][3] = (first 1] 7 9 4 8
index)
6 9 3 7

145

INITIALIZATION (2D array)
* Initialized directly in the declaration statement

* intb[2][3] ={51, 52, 53, 54, 55, 56};
b[0][0] =51 b[1][0] =54
b[0][1] =52 b[1][1] =55
b[0][2] =53 b[1][2] =55

* Use braces to separate rows in 2-D arrays.
¢ intc[4][3] ={{1, 2,3},

{41 51 6}I
{71 81 9}I

{10, 11, 12}};
* intc[][3]1={{1, 2, 3},

{4I 5’ 6}l
{7I 8[9}I
{10, 11, 12}};

* Implicitly declares the number of rows to be 4.

* Data may be input into two-dimensional arrays using nested for loops interactively or

with data files.

* A nested for loop is used to input elements in a two dimensional array.

* In this way by increasing the index value of the array the elements can be entered in a 2d

array.
PROGRAM: Two-dimensional Array

1| /* ==================== fillArray ====================
2 This function fills array such that each array element
3 contains a number that, when viewed as a two-digit
< integer, the first digit is the row number and the
5 second digit is the column number.

6 Pre table is array in memory

7 numRows is number of rows in array

8 Post array has been initialized

9| */

10 | void fillArray (int table[][MAX COLS], int numRows)

11 | {

12 | // Statements

13 for (int row = 0; row < numRows; row++)

14 {

15 table Trowll01 = row * 10:

16 for (int col = 1; col < MAX COLS; col++)

17 table [row][col] = table [row][col - 1] + 1;

18 y // for

19 return;

20| y // fillArray 146

00| 01|02 |03| 04
10|11 |12 113 | 14

User’'s View

row O

row 1

| 00 || 01][02 || 03]| 04 |

|10 | 11][12][13][14 |

[0][O] [0][1][O][2] [O][3] [O][4]

(1101 (1111 [1][2] [1][3] [1][4]

Memory View
FIGURE: Memory Layout

PROGRAM: Convert Table to One-dimensional Array
1| /* This program changes a two-dimensional array to the
2 corresponding one-dimensional array.
3 Written by:
4 Date:
5| */
6 | #include <stdio.h>
7 | #define ROWS 2
8 | #define COLS 5
9
10 | int main (void)
11| {
12 | // Local Declarations
13 int table [ROWS] [COLS] =
14 {
15 {00, 01, 02, 03, 043},
16 {10, 11, 12, 13, 14}
17 }; // table
18 int line [ROWS * COLS];
19
20 | // Statements
21 for (int row = 0; row < ROWS; row++)
22 for (int column = 0; column < COLS; column++)
23 line[row * COLS + column] = table[row][column];
24
25 for (int row = 0; row < ROWS * COLS; rowt+)
26 printf(" %02d ", line[row]);
27
28 return 0;
29 | ¥ // main

Results:
00 01 02 03 04 10 11 12 13 14

147

// Function Declarations

void print_square (int []);

int main (void)

{

int table [MAX ROWS] [MAX_ COLS] =

{

o, 1, 2, 31},

10, 11, 12, 13 1},

20, 21, 22, 23 1},

30, 31, 32, 33 1},

40, 41, 42, 43

}; /* table */

e R T

for (int row = 0; row < MAX ROWS; row++)
print_square (table [row]);

return 0;
} // main

#define MAX_ROWS 5 D
#define MAX_COLS 4

void print_square (int x[])

{
for (int col = 0; col < MAX _COLS; col++)
printf("%e6ed", x[col] * x[col]);
printf ("\n");
return;
} // print_square

FIGURE: Passing a Row

#tdefine MAX_ROWS 5 h

#define MAX_COLS 4

// Function Declarations

void print_square (int []1);

int main (void)

{

int table [MAX ROWS] [MAX COLS] =

{

0, 1, 2, 3 1},

10, 11, 12, 13 1},

20, 21, 22, 23 1},

30, 31, 32, 33 1},

40, 41, 42, 43 '}

}; /* table */

e R B R

for (int row = 0; row < MAX_ROWS; row++)
print_square (table [row]);

return 0;

} // main
void print_square (int x[]) Il
{

for (int col = 0; col < MAX COLS; col++)
printf ("%6d", x[col]l * x[coll);

printf ("\n");

return;

} // print_square

FIGURE: Calculate Average of Integers in Array

table

10 [11 [12] 13

20|21 22|23

30|31 32|33

40 | 41 | 42 | 43

address
of a row

X

0 1 4 9
100 121 144 169
400 441 484 529
900 9611024 1089
1600 1681 1764 1849

ﬁ
table
0 1 2 2

10| 11 [12 [13

20 (21 (22]| 23

30| 31| 32|33

40 |41 | 42 | 43

address
of a row

X

0 1 4 9
100 121 144 169
400 441 484 529
900 9611024 1089
1600 1681 1764 1849

ﬁ

148

o 1) 1) 1| 1f 1
=11 0 1| 1] 1] 1
-1|-1) o 1] 1] 1
-1|-1|-1| 0] 1] 1
-1|-1|-1|-1] 0] 1
-1|-1|-1(-1]-1| O

FIGURE: Example of Filled Matrix

PROGRAM: Fill Matrix

QO ~J o L =W N

(S ST S R S R S T S S S S S S LS e T e T e e e e
P O W 00 ~1 O O = W NP O W oo oy EEWw NN RO WY

/* This program fills the diagonal of a matrix (square
array) with 0, the lower left triangle with -1, and
the upper right triangle with 1.

Written by:
Date:

*/

tinclude <stdio.h>

int main (void)

{

// Local Declarations
int table [6][6];

// Statements
for (int row = 0; row < 6; row++)
for (int column = 0; column < 6; column++)
if (row == column)

table [row][column] = 0;
else if (row > column)

table [row][column] = -1;
else

table [row][column] = 1;

for (int row = 0; row < 6; rowt+)
{
for (int column = 0; column < 6; column++)

printf("%3d", table[row][column]);

printf("\n");
} // for row

return 0;

} // main

149

Three Dimensional (3D) ARRAY in C Language

* A 3D array is essentially an array of arrays of arrays: it's an array or collection of 2D
arrays, and a 2D array is an array of 1D array.

31 32 33 2 2-D Array
21 | 22 | 23 }——12-DArray
11 12 13 0" 2-D Array

14 15 16

17 18 19

[0][1 | 2 | 3 |

table [0][0]

[t0 | 11 || 12 [13]

table [0][1]
| 20 |

table [0][2]
3 32

table[2]

table [0][3]
42

table[1]

table[0]

table [0][4]

FIGURE: C View of Three-dimensional Array 150

Declaration and Initialization 3D Array

void main()

{

int i, j, k;

int arr[3][3]1[3]=

{

{
{11, 12, 13},
{14, 15, 16},
{17, 18, 19}
s
{
{21, 22, 23},
{24, 25, 26},
{27, 28, 29}
Ts

{
{31, 32, 33},

{34, 35, 36},
{37, 38, 39}
I
1
clrscr();
printf{":::3D Array Elements:::%nin");
for{i=0;1<3;i++)

{
for{j=08;j<3;j++)
{
for{k=0;k<3;k++)
{
printf{"%d\t",arr[i]1[j1[k]);
¥
printf{"\n"});
¥
printf{"\n");
¥
getch();
F

13
16
19

23
26
Ve

33
{‘l
39

151

Array using a Loop

1 #include<stdio.h>
2 #include<conio.h>»

41 wvoid main()

{

; int i, j, k, x=1;

7 int arr[3]1[3]]31;

: clrscr();

printf{":::3D Array Elements:::\nin");

11 for{i=6;1<3;i++)

7l I
12 for(j=0;3<3;j++)
14 {
15 for{k=06;k<3;k++)
: {
17 arr[1][J][k] = x;
18 printf("%d\t",arr[i]1[j]1[k]);
X+t

¢ }

71 printf{"\n");

’9 }

73 printf{"\n");

241}

25 getch{);

h

152

Terbitan

~OLIT=I<Nil<

MALAYSIA
KUALA TERENGGANU

e ISBN 978-967-2240-27-3

788 2402

9789672 0273

