
PROGRAMMING
FUNDAMENTALS

WAN FAZLINI IDAYU BINTI W.FAKARI

First Published 2021

© Politeknik Kuala Terengganu

e-ISBN 978-967-2240-27-3

All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, electronic, including

photocopying, recording or by any information storage or

retrieval system, without prior written permission from the

Director of Politeknik Kuala Terengganu

Author :

Wan Fazlini Idayu Binti W.Fakari

Published by :

Politeknik Kuala Terengganu,

Jalan Sultan Ismail,
20200 Kuala Terengganu, Terengganu.

09-6204100

PROGRAMMING
FUNDAMENTALS course

provides the skills necessary
for the effective of

application of computation
and computer programming
in engineering applications.
Students will develop their
programming skills through
a variety of assignments and
labs and by reviewing case

studies and example
programs. The learning

outcome is proficiency in
writing small to medium
programs in a procedural
programming language.

Table of
contents

1
1.1 Programming Language

1.2 Types of Programming

1.3 Structure Programming Methodology

1.4 Algorithm, Flow Chart and and

pseudocode

1.5 Algorithm, flowchart and pseudocode

1.6 Algorithm, flowchart, pseudocode and

analyze problem

Introductory to Programming

2.1 Variables, Constants and Data Types

2.2 Fundamentals of C Programming

2.3 Input, Proses & Output statements

2.4 Hardware & Software operation

Fundamentals of C Language2

3
3.1 Selection statements

3.2 IF statements

3.3 IF-ELSE statement

3.4 Nested IF statement

3.5 SWITCH statements

Selection Statements

4

5
5.1 Function statement

5.2 Function prototype declaration

5.3 Returning function result

5.4 Function call function

5.5 Arrays statement.

5.6 Multidimensional arrays

5.7 I/O operation

Function and Array

4.1 Looping statements

4.2 FOR statement

4.3 Nested FOR statement

4.4 WHILE, DO-WHILE loop statements

Looping Statements

1

28

73

88

111

CHAPTER
1

Introductory to
Programming

PROGAMMING
Computer programming is the process of

designing and building an executable computer
program to accomplish a specific computing result
or to perform a specific task.

Programming involves tasks such as: analysis,
generating algorithms, profiling algorithms'
accuracy and resource consumption, and the
implementation of algorithms in a chosen
programming language (commonly referred to as
coding).

INTRODUCTION
A computer is a machine that can be

programmed to carry out sequences of
arithmetic or logical operations automatically.

Modern computers can perform generic sets of
operations known as programs. These programs
enable computers to perform a wide range of
tasks.

Most of us have used computers in one way
or another. For example, withdrawing money
from the aotomated teller machine (ATM) is a
form of interaction with computer

3

Computer Programming

The process of writing, testing and maintaining

the source code of the computer program

•Requires knowledge in the application domain

•Follow the steps in software development method

How to program ?

What ?

Programming is a problem-solving activity

To solve problems

occurred in life

with the assistance

of computer

To ease daily process

e.g.: transaction,

payroll, accounting,

registration,

information exchange

etc. 4

Know the programming language

Programming Language

A set of symbol, word, code or instructions which

is understood by computer

Method of communication for which computers

could understand and execute the instructions

written in source code.

Function?

What ?

?

Hello! What can I do to you?

Tell me 1 + 1 is equal
to what???

A programming
language is
therefore a
practical way
for us (humans)
to give
instructions to
a computer.

5

Background of C programming

• Derived from the BCPL language by Martin Richards (1967).

• Ken Thompson developed a B language from BCPL language(1970).

• Evolved into the C language by Dennis Ritchie (1970) at Bell Telephone Laboratories Inc.

(now the AT & T Bell Laboratories).

• C language was first used on a computer Digital Equipment Corporation PDP-11 to fully

use in UNIX operating system.

• the portability of the compiler;

• the standard library concept;

• a powerful and varied repertoire of operators;

• an elegant syntax;

• ready access to the hardware when needed;

• and the ease with which applications can be optimised by hand-coding isolated

procedures

• C is often called a "Middle Level" programming language. This is not a reflection on its

lack of programming power but more a reflection on its capability to access the system's

low level functions.

C History

Why use C?

Sample of C program

#include <stdio.h>
main()
{

printf("hello, world\n");
return 0;

}

Examples of C programming
6

Sample of C program

• computer program run through the following steps:

Edit : Source code (type the program)

Compile : If no syntax errors  Object Code

Link : Link to library function  exe mode

Run : Output (check for any semantic errors)

Compile and execute programs.

7

Definition and types of programming

• A set of step-by-step instructions that tells a computer to perform a specific task and to
produce the required results.

• written by the programmer

• Produced through programming

Programme

Programmer

• A Programmer is a person who designs, writes and test computer programs.

• Individual that composes instructions for computer systems to refer to when
performing a given action.

What is programming?
• Programming is a process of designing or creating a

program.

• It is a communication technique to explain the
instructions to the computer.

• Used to produce the program.

Programming

Programming Language

• a set of conventions in which instructions for the machine are written.

• A high-level language used to write computer programs, as COBOL or
BASIC, or, sometimes, an assembly language.

• An artificial language used to write instructions that can be translated
into machine language and then executed by a computer.

8

programmer

program

Programming language / coding

programming

Understand the term of program, programming,

programmer and programming language

How does your computer understand your code?

• What most programmers write as “code” is a high level
programming language. It is abstract by design.
Abstraction in this context means that we are moving
further away from machine code and programming
languages are closer to spoken languages.

• But a computer can’t understand text based code. It
needs to be compiled (translated) into machine code.
Machine code is a set of instructions which can be
understood by a computer’s central processing unit
(CPU). Think of the CPU as the brain of a computer.
Machine code is made up of ones and zeros. This is called
binary.

What exactly is a programming language?
• Programming languages fall both within the spectrum of low-level languages, such as assembly,

and high level programming languages, such as JavaScript.

9

Programming Language

C language
assembly

Language

Motorola I.C

• There are multiple types of programming language. Choosing a suitable one is important.

• The are two categories of language, which are low-level languages and high-level languages.

10

#1: Machine Level Language

• Machine languages are the only Programming languages understood by computers.
While easily understood by computers, machine languages are almost impossible for
human to use because they consist entirely of numbers (binary bits i.e. 0 or 1).

• Advantages:

• the programs are written in binary form,

• there is no need of assemblers or compilers to convert the codes to machine
readable form so the execution is fast.

• This also leads to smaller file size.

• Disadvantages:

• It is extremely difficult to learn , as program codes are to be written in binary form.

• It is machine dependent so program written on one computer cannot be run on
another computer of the same type.

• As they are machine dependent proper knowledge of CPU.

Programming Languages

11

#2: Low Level or Assembly Language

• Assembly language is a type of programming language ,which is used to program
computers, microprocessors, microcontrollers, and other (usually) integrated circuits.

• They implement a symbolic representation of the numeric machine codes and other
constants needed to program a particular CPU architecture.

• An assembly language is thus specific to certain physical or virtual computer
architecture. An assembly language programmer must understand the microprocessor’s
unique architecture (such as its registers and instruction).

• Program written in assembly language is converted to binary codes using special
programs called assemblers.

• In assembly language a mnemonic is a code, usually from 1 to 5 letters, that represent
an operational code (op-code), followed by one or more numbers (the operands).

• Op-code or operation code is between one and three bytes in length and uniquely
defines the function that is performed. It is the data that represents a microprocessor
instruction.

Programming Languages

12

#2: Low Level or Assembly Language

• Advantages:

• Program written in assembly language are simpler
than program written in machine codes as use of
binary codes to represent operational codes is
replaced by words (mnemonics).

• Program written for a family of microprocessors
need not be rewritten i.e. machine dependence is
somewhat reduced.

• Less knowledge of CPU architecture compared to
machine level language is required.

• Disadantages:

• Requirement of knowledge of CPU architecture is
not completely eliminated.

• Assembly Languages are to be converted into binary
codes using assemblers so final executable file size is
large compared to machine level ones.

Programming Languages

#3: High Level Language

• High level programming languages are those programming language which use normal
everyday word to represent the executable operational codes.

• These types of programming language follow strictly followed rule for writing these
instruction. This rule is known as syntax.

• High level languages are easy to learn as they avoid the need to understand the complex
CPU architecture and also because the commands are in plain understandable English
form.

• These programs written in plain English form following syntax are converted in machine
understandable form using either compilers or interpreters.

• Advantages.
• They are easy to understand and user friendly.

• It reduces the complexity of programming as need of knowledge of CPU architecture is eliminated.

• High level programs are very easy to maintain than machine and lower level languages. In machine and lower
level languages, instructions are difficult and very hard to locate, correct and modify but in high level language,
it is very easy to understand and modify when desired.

• Each high-level language provides a large number of built-in functions or procedures that can be used to
perform specific tasks during designing of new programs. In this way, a large amount of time of programmer is
saved.

• Program written in high-level language is machine independent. It means that a program written on one type
of computer can be executed on another type of computer.

13

Programming Languages

#3: High Level Language

• Advantages.
• They are easy to understand and user friendly.

• It reduces the complexity of programming as need of knowledge of CPU architecture is eliminated.

• High level programs are very easy to maintain than machine and lower level languages. In machine and lower
level languages, instructions are difficult and very hard to locate, correct and modify but in high level language,
it is very easy to understand and modify when desired.

• Each high-level language provides a large number of built-in functions or procedures that can be used to
perform specific tasks during designing of new programs. In this way, a large amount of time of programmer is
saved.

• Program written in high-level language is machine independent. It means that a program written on one type
of computer can be executed on another type of computer.

• Disadvantages.
• The additional process of compilation needs more machine time than the straight assembly process.

• There is no control of hardware part while writing high level programs.

• The programs have to be compiled every time a change is made.

Compiler

• Compiled languages are converted directly into machine code that the processor can execute.
As a result, they tend to be faster and more efficient to execute than interpreted languages.

Interpreter

• Interpreters run through a program line by line and execute each command.

• Interpreted languages were once significantly slower than compiled languages.

14

Computer only
understands
machine language.

So, computer need
translator call:
-Assembler
-Compiler or interpreter.

Assembler:
assembly machine

compiler or interpreter
high level machine

Assembler

Assembly

code

Object code

(machine language)

15

• Various software design techniques have been introduce to improve the structure of
programs for better understanding and efficiency. These techniques are as follows:

• Modular programming (MP)

• Structured programming (SP)

• Object-oriented programming (OOP)

• The goal of MP, SP and OOP are similar, which is to facilitate the construction of large
software programs and systems by decomposition into smaller pi These pieces are called
subdivisions, modules, units, functions, procedure subroutines or objects.

• Modular programming (MP) refers to high-level decomposition of the entire programing
modules. The modules are differentiated by an independent set of tasks or function such
as input/output, mathematical process or domain-specific processes example, a function
to calculate average marks, mode mark, standard deviation or minimal mark.

• MP can use Structured programming (SP) approach or Object-oriented programming
(OOP) approach. In SP approach, the modules are functions. In OOP approach, the
modules are objects.

Types Of Programming And Structure Programming Methodology

Modular Programming (MP)

Structures Programming (SP) Object-oriented Programming (OOP)

Modular programming

• Modular programming is a software design technique that increases the extent to which
software is composed of separate, interchangeable components called modules by
breaking down program functions into modules, each of which accomplishes one function
and contains everything necessary to accomplish this.

• Conceptually, modules represent a separation, and improve maintainability by enforcing
logical boundaries between components.

Main program
data

module1

data+data1

procedure1

module2

data+data2

procedure2 procedure3

16

Structured programming

• Structured programming is a programming paradigm/technique aimed on improving
the clarity, quality, and development time of a computer program by making
extensive use of subroutines, block structures and for and while loops.

• Top-down approach.

• The most popular structured programming languages include C,C++, Ada, and Pascal.

• Split the task into modular/specific box to make program much more easier to
develop

Object-Oriented programming

• Programming techniques may include features such as data abstraction,
encapsulation, messaging, modularity, polymorphism, and inheritance. Many
modern programming languages now support OOP, at least as an option.

• The most popular object-oriented programming languages include Java, Visual Basic,
C#, C++, and Python.

Everything in OOP is grouped as self
sustainable "objects"

17

Structured Programming Object Oriented Programming

Structured Programming is designed which

focuses on process/ logical structure and

then data required for that process.

Object Oriented Programming is designed

which focuses on data.

Structured programming follows top-down

approach.

Object oriented programming follows

bottom-up approach.

Structured Programming is also known as

Modular Programming and a subset of

procedural programming language.

Object Oriented Programming supports

inheritance, encapsulation, abstraction,

polymorphism, etc.

In Structured Programming, Programs are

divided into small self contained functions.

In Object Oriented Programming,

Programs are divided into small entities

called objects.

Structured Programming is less secure as

there is no way of data hiding.

Object Oriented Programming is more

secure as having data hiding feature.

Structured Programming can solve

moderately complex programs.

Object Oriented Programming can solve

any complex programs.

Structured Programming provides less

reusability, more function dependency.

Object Oriented Programming provides

more reusability, less function

dependency.

Less abstraction and less flexibility. More abstraction and more flexibility.

Comparison between Structured Programming and Object-Oriented Programming

18

Algorithm, Flow Chart and and pseudocode

Algoritm In Programming

• Definition: an algorithm is a step-by-step procedure to solve a given
problem.

• An algorithm gives a solution to a particular problem as a well defined
set of steps.

• A recipe in a cookbook is a good example of an algorithm. When a
computer is used for solving a particular problem, the steps to the
solution should be communicated to the computer.

• An algorithm is executed in a computer by combining lot of elementary
operations such as additions and subtractions to perform more
complex mathematical operations.

Define the algoritm in programming

• Let's say that you have a friend arriving at the airport, and your friend needs
to get from the airport to your house. Here are four different algorithms that
you might give your friend for getting to your home:

• The taxi algorithm:
• Go to the taxi stand.
• Get in a taxi.
• Give the driver my address.

• The call-me algorithm:
• When your plane arrives, call my cell phone.
• Meet me outside.
• I’ll take u to my home!!

• The rent-a-car algorithm:
• Take the shuttle to the rental car place.
• Rent a car.
• Follow the directions to get to my house.

• The bus algorithm:
• Outside baggage claim, catch bus number 70.
• Transfer to bus 14 on Main Street.
• Get off on Elm street.
• Walk two blocks north to my house.

• All four of these algorithms accomplish exactly the same goal,

• BUT each algorithm does it in completely different way.

• In computer programming, there are often many different ways -
algorithms -- to accomplish any given task.

• Each algorithm has advantages and disadvantages in different
situations.

19

20

Pseudocode In Programming

• Pseudocode is one of the methods that could be used to represent an algorithm. It is not
written in a specific syntax that is used by a programming language and therefore cannot
be executed in a computer.

• There are lots of formats used for writing pseudocode and most of them borrow some of
the structures from popular programming languages such as C, Lisp, FORTRAN, etc.

Pseudocode in C programming Adding 2 numbers

1. Initialize total to zero

2. Initialize number1

3. Initialize number2

4. Input number1

5. Input number2

6. Add number1 and number2 = total

7. Display the result.

There are two algorithm representations:

(a) Psesedocode – An English-like list of instructions.

(b) Flow chart – Graphical notation for easy reading.

21

Flow chart In Programming

• Graphic representation of algorithm which is consist of geometric symbols.

• Symbols are connected by line of arrows called flow lines which indicate the direction of
flow of processes or activities.

• The shape of the symbol indicates the type of operation that is to occur.

• Flowchart should flow from the top of the page to the bottom. The symbols used in
flowchart are standardized.

Symbol Name Description

Terminal Marks the beginning of a program

Terminal Marks the ending of a program

Input / Output To enter data or to display data

Process A set of instructions to transform input into output

Annotation To put comments or additional information

Connector
Entry point or exit point to another part of the flow
chart

Decision
Condition determining which of two separate paths
to follow

Flow Line
Connector between flow chart nodes indicating
sequence of the steps. The arrow head indicates the
sequence direction

22

Advantages Disadvantages

Clear: It graphically shows the logic of
an algorithm. It is easier to visualizea
flow chart than to read code. One can
analyse a flow chart like reading a map.
It is easy to analyse bad relationships
between components or to detect a
logical path that is not complete.

Clumsy: One has to be familiar with
the notations, and drawing notations
require some effort to produce.

Standard notation: The notations are
standard, and are therefore easy to
recognize by a wider audience. Flow
charts include standard notations for
selection structures and looping
structures.

Complex drawing: A flow chart may
take up a big drawing space. It's
important to be aware of the space
utilized for drawing the notations.
Otherwise, the drawing may become
clumsy and complex.

Logical accuracy: Flow charts provide a
positive constraint to the programmer
who drafts the algorithm, ensuring an
algorithm is defined using only a
specific set of notations. This way, it is
not possible to accidentally include a
design that cannot be implemented as
code. Furthermore, using notation
forces one to analyse the solution
instead of stopping at a basic or
abstract level, since it is not possible to
represent an abstract step in notation.

Challenging to translate: Flow charts
may not be as convenient as
pseudocode when being translated to
corresponding programming code. This
is because a flow chart is in drawing
form while a pseudocode's form is
closer to actual programming code.

The Advantages And Disadvantages Of Flow chart

23

Construct flowchart for the given problem.

Algorithm and flow chart to read the name and print the name.

Algorithm and flow chart to add two numbers.

Algorithm and flow chart to find the average of three numbers.

24

Construct flowchart for the given problem.

Algorithm and a flow chart to calculate area of square.

Apply flowchart for the following

a. Sequence structure.

In a computer program or an algorithm, sequence involves simple steps which are to be
executed one after the other. The steps are executed in the same order in which they are
written.

25

b. Selection Structure.

Selection is used in a computer program or algorithm to determine which particular step or set of
steps is to be executed.

c. Looping Structure.

• Repetition allows for a portion of an algorithm or computer program to be done any number
of times dependent on some condition being met.

• An occurrence of repetition is usually known as a loop.

• An essential feature of repetition is that each loop has a termination condition to stop the
repetition, or the obvious outcome is that the loop never completes execution (an infinite
loop).

26

Questions
1. Define ‘programming language’.

2. Can programming be used to solve all types of problems? Why and why not?

3. Describe how Computational Thinking can be used to solve programming problems.

4. Identify THREE (3) advantages offered by high-level languages (HLLs) over low-level
languages (LLLS).

5. Machine language is fast but not programmer-friendly. Discuss.

6. (a) Describe how 'structured programming' is different from 'spaghetti coding. (b)
Between Fortran and C, which programming language is more structured? Why?

7. Why is machine-independent language usually preferred over machine independent
language?

8. Before a program can be executed, it has to be compiled from its source code.
Describe the difference between executable file and source code.

27

CHAPTER
2

Fundamentals
of C Language

• Variables

• A variable is just a named area of storage that can hold a single value (numeric or
character).

• they represent some unknown.

• Programming language C has two main variable types

• Local Variables

• Global Variables

#include<stdio.h>

void print_number(void);

int p;

void main (void)

{

int q = 5;

printf(“q=%d”, q);

p=10;

print_number();

}

void print_number(void)

{

printf(“%d”,p);

q = q + 5;

}

Example: Local vs. Global

p is declared outside of all

functions. So, it is a global

variable.

q is declared inside the

function main. So, it is a local

variable to the function.

p can be used anywhere

Error! q can only be used in

the function main, because it

is a local variable

30

This is

Variable.!!

a variable must be

declared before it

can be used !!

• Constants:

• the values that never change,

• Constants can be very useful in C programming whenever you have any value that is
repeated in your program.

31

• Variables and Constants

• Name or identifier can be declared with constant,

This is Variable.!!

and it can be declared

with constant…

• Rules for Variables & Constants

• may be given representations containing multiple characters. But there are rules for
these representations..

• May only consist of letters, digits, and underscores

• May be as long as you like, but only the first 31 characters are significant

• May not begin with a number

• May not be a C reserved word (keyword)

• May only consist combination of letters, digits, and underscores

• May be as long as you like, but only the first 31 characters are significant

32

• Rules for Variables & Constants

• May not begin with a number

• May not be a C reserved word (keyword)

• Rules for Variables & Constants

• To declare a variable means to create a memory space for the variable depending on
the data type used and associate the memory location with the variable name.

• The shortest variable name is a letter of the alphabet.

• Variables are typically in lowercase. (All of C is lowercase for the most part.) They can
contain letters and numbers.

• AGAIN!!..You should not begin a variable name with a number. They can contain
numbers, but you begin it with a letter.

int h;

int w;

int area;

Example:

h= 2 meter

W = 4 meter

area = ? output

Example

r = 8.24 meter

A = π x 8.24 x 8.24

If all value is floating point??

float r;

float A;

If r is integer??

int r;
Example r = 8 meter

33

If all value is integer??

int height;

int width;

int length;

If all value is floating point??

float height;

float width;

float length;

Questions

Write down the variable name with data type

Global variables and Local variables

• Variables are classified into Global variables and Local variables based on their scope.
• The main difference between Global and local variables is that global variables can be accessed

globally in the entire program, whereas local variables can be accessed only within the function
or block in which they are defined.

• The scope of variables can be defined with their declaration, and variables are declared mainly
in two ways:

• Global Variable: Outside of all the functions
• Local Variable: Within a function block 34

Global variables Example: Local variables Example:

Global variable Local variable

Advantages • Global variables can be
accessed by all the functions
present in the program.

• Only a single declaration is
required.

• Very useful if all the functions
are accessing the same data.

• The value of a global variable can
be changed accidently as it can
be used by any function in the
program.

• If we use a large number of
global variables, then there is a
high chance of error generation
in the program.

Disadvantages • The same name of a local
variable can be used in different
functions as it is only recognized
by the function in which it is
declared.

• Local variables use memory only
for the limited time when the
function is executed; after that
same memory location can be
reused.

• The scope of the local variable is
limited to its function only and
cannot be used by other
functions.

• Data sharing by the local variable
is not allowed.

Advantages and Disadvantages of Global and Local Variable

35

Comparison Chart Between Global Variable and Local Variable

Global Variable Local Variable

Global variables are declared outside all

the function blocks.

Local Variables are declared within a

function block.

The scope remains throughout the

program.

The scope is limited and remains within

the function only in which they are

declared.

Any change in global variable affects the

whole program, wherever it is being used.

Any change in the local variable does not

affect other functions of the program.

A global variable exists in the program for

the entire time the program is executed.

A local variable is created when the

function is executed, and once the

execution is finished, the variable is

destroyed.

It can be accessed throughout the

program by all the functions present in the

program.

It can only be accessed by the function

statements in which it is declared and not

by the other functions.

If the global variable is not initialized, it

takes zero by default.

If the local variable is not initialized, it

takes the garbage value by default.

Global variables are stored in the data

segment of memory.

Local variables are stored in a stack in

memory.

We cannot declare many variables with

the same name.

We can declare various variables with the

same name but in other functions.

Keywords in C Programming Language :
• Keywords are those words whose meaning is already defined by Compiler
• Cannot be used as Variable Name
• There are 32 Keywords in C
• C Keywords are also called as Reserved words

36

• Use keywords in programmes.

Exercise: determine the variables & constants

The basic data types in C.

• A program usually contains different types of data types (integer, float, character etc.) and
need to store the values being used in the program.

• C language is rich of data types. A C programmer has to employ proper data type as per
his/her requirements. C language provides various data types for holding different kinds of
values.

• C language provides various data types for holding different kinds of values.

• There are several integer data types, a character data type, floating point data types for holding
real numbers and more.

• C has a concept of 'data types' which are used to define a variable before its use. The
definition of a variable will assign storage for the variable and define the type of data that will
be held in the location.

• C has different data types for different types of data and can be broadly classified as:

 Primary Data Types

 Secondary Data Types

37

Primary Data Types

PRIMARY
DATA

TYPES

int

•for
integer

float

•for decimal
point

char

•Character &
String

double

•for
decimal
point

Secondary Data Types

SECONDARY
DATA

TYPES

Array[]

*pointer

enumeration

structure

38

Integer types
• C provides several standard integer types, from small magnitude to large magnitude

numbers: char, short int, int, long int, long long int.

• Each type can be signed or unsigned. Signed types can represent positive and negative
numbers while unsigned can represent zero and positive numbers.

• C provides several standard integer types, from small magnitude to large magnitude
numbers: short int; int; long int; long long int;

1 Byte = 8 Bits

1 1 1 1 1 1 1 1

1 Byte

8 Bits

Numeric: Integer types
• Generally an integer (int) occupies 2 bytes memory space and its value range limited to -

32768 to +32767 (that is, -215 to +215-1).
• A signed integer use one bit for storing sign and rest 15 bits for number.

2 Bytes memory

Signed FFFF HEX = -32768 to 32767 DECIMAL

Unsigned FFF HEX = 0 - 65535 DECIMAL

Integer

types

signed

short int

int

long int

unsigned

short int

int

long int

Integer types
signed short int

signed int

signed long int

39

Integer types

Syntax:

int <variable name>;

int num1;

short int num2;

long int num3;

Example: 5, 6, 100, 2500.

Numeric: Floating point types

• The float data type is used to store fractional numbers (real numbers) with 6 digits of
precision. Floating point numbers are denoted by the keyword float.(eg. 0.000001)

• When the accuracy of the floating point number is insufficient, we can use the double to
define the number. The double is same as float but with longer precision and takes double
space (8 bytes) than float.

• To extend the precision further we can use long double which occupies 10 bytes of memory
space.

40

Syntax:

float <variable name>; like

float num1;

double num2;

long double num3;

Example: 9.125, 3.1254.

Floating Point Data Type Memory Allocation

Character:
• Character type variable can hold a single character. As there are singed and unsigned int

(either short or long), in the same way there are signed and unsigned chars;

• Both occupy 1 byte each, but having different ranges. Unsigned characters have values
between 0 and 255, signed characters have values from –128 to 127.

Syntax:

char <variable name>; like

char ch = ‘a’;

Example: a, b, g, S, j.

String:

• A string in C is an array of char values terminated by a special null character value '\0'. For
example, here is a statically declared string that is initialized to “bye":

char str[4]; // need space for chars in str, plus for terminating '\0' char

str[0] = ‘b';

str[1] = ‘y';

str[2] = ‘e';

str[3] = '\0';

printf("%s\n", str); // prints bye to stdout

41

Data type and conversion specification

Data type printf conversion
specification

scanf conversion
specification

long double %Lf %Lf

double %f %lf

float %f %f

unsigned long int %lu %lu

long int %ld %ld

Unsigned int %u %u

int %d %d

Unsigned short %hu %hu

short %hd %hd

char %c %c

Exercise:

Determine what types of data to used if the given number is?

Question:

Number is

234

23.122

2

‘a’

“Dad”

2314.1121231

42

Input-Process-Output (IPO) analysis

• Understand the input, process and output before start to code. Begin the coding with
Input-Process-Output (IPO) analysis.

• Use IPO analysis to understand the problem statement clearly. This is done by breaking a
problem statement into the following components:

a) INPUT: Find out what the inputs are. Inputs are data inserted into the program
before it begins processing. Identifying input is not as easy as it sounds, so please
pay attention to the problem statement.

b) PROCESS: This describes how to process the INPUT into a desired OUTPUT.
Processing includes using mathematical formula, word processing steps, or
computer logic to transform the value of the input.

c) OUTPUT: Output is the expected result after processing. This is usually the
displayed output on the computer screen or data saved into a text file.

• It may be handy to create an IPO chart when analysing the problem statement. An IPO
chart is a three-column chart with Input, Process and Output as the column headers. See
the example above:

INPUT PROCESS OUTPUT

• Enter the first
number

• Enter the second
number

• Choose the
“addition”
operation

• Store the first
number in
memory

• Store the second
number in
memory

• Perform the
operation on the
two numbers
stored in
memory

• Result of
operation

Example:

• To produce an IPO chart, one should first analyse the problem statement or case. An IPO
analysis can be done systematically by asking the following questions:

• Step 1: Ask yourself, "What is the expected output?"•

• Step 2: Ask yourself, "What is the process required to get the output?" This can be
any formula or conversion steps given by the problem. If no formula or steps are
given, determine the appropriate formula or steps from your general knowledge or
from research.

• Step 3: Ask yourself, "What are the inputs the program needs from the user?"

43

Questions

• Given the following problem statement, conduct an IPO analysis to produce
the IPO chart:

• Problem statement: “ A shape program reads the radius and computes the
circumference and area of a circle.

IPO analysis:

• The program ‘display circumference and area’, indicating the output of the
program.

• The formula to compute the circumference and area are not given. They are
standard formula (𝐴 = 𝜋𝑟2).

• The formula requires inputs from users. The phrase ‘read radius’ indicates
that the radius is the input.

IPO chart:

Input Process Output

• Radius 1. Get radius
2. Circumference = 2 x 3.142 x

radius
3. Area = 3.142 x radius x radius
4. Display circumference and area

• Circumference
• Area

44

Six (6) phase of C development environment:

1. Editor - Software packages for the C/C++ integrated program development
environments such as Microsoft Visual Studio have editors that are integrated into
the programming environment.

C program file names should end with the .c extension.

2. Preprocessor

• In a C system, a preprocessor program executes automatically before the
compiler’s translation phase begins.

• commands called preprocessor directives, which indicate that certain
manipulations are to be performed on the program before compilation.

3. Compiler

• the compiler translates the C program into machine-language code. (High
language → Machine language)

4. Linker

• contain references to functions defined elsewhere, such as in the standard
libraries (e.g <stdio.h>) or in the private libraries of groups of programmers
working on a particular project.

5. Loading

• Before a program can be executed, the program must first be placed in
memory. This is done by the loader, which takes the executable ‘image’
from disk and transfers it to memory. Additional components from shared
libraries that support the program are also loaded (if).

6. CPU

• Finally, the computer, under the control of its CPU, executes the program
one instruction at a time. (*.exe)

45

preprocessor

header file

main function

user program inside

{….}

user defined function (if

any)

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {
8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended

successfully */
11
12 } // end function main.

Welcome to C!

Open text
editor.

Save file as
file-name.c

Compile

Build

Run & Result
46

Try this….and observe..

put \n

Try this..

47

• Notice that the characters \n were not printed on the screen. The backslash (\) is

called an escape character..

try to change \n → \a.. observe what happen

try to change this..

int is refer to the
integer

number_3  %d

Value change  %d change

How to view number..try edit, compile and run!

48

try to change this..

number_3  %d

Value change  %d change

%d just for integer only!!

How to view number..try edit, compile and run!

49

The Structure Of C Programs

A C program basically consists of the following parts :

• Preprocessor directives
• Functions
• Variables
• Statements & Expressions
• Comments

• Preprocessor directives.

• Text must be start with #include<header.h>

• #define is one of the preprocessor directives.

• #define is one of the preprocessor directives.

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {
8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended successfully */
11
12 } // end function main.

Welcome to C!

50

• The C preprocessor (cpp) is the preprocessor for the C and C++ computer programming
languages.

• The preprocessor handles directives for

• source file inclusion (#include)

• macro definitions (#define), and

• conditional inclusion (#if).

• Header file is a file that allows programmers to separate certain elements of a program's
source code into reusable files.

• These are collectively known as the standard libraries and include:

• string.h : for string handling

• stdlib.h : for some miscellaneous functions

• stdio.h : standardized input and output

• math.h : mathematical functions

Compile &
Run

under header stdlib.h

51

• These are collectively known as the standard libraries and include:

• ctype.h : for character handling

• conio.h : library functions for performing "console input and output" from a program

• Tells computer to load contents of a certain file;

• <stdio.h> allows standard input/output operations

stdio.h (standard input output header) example.

printf prints formatted byte/wchar_t output to stdout,

scanf reads a byte string from stdin

puts writes a byte string to stdout

gets reads a byte string from stdin

• conio.h is a C header file used in old MS-DOS compilers to create text user interfaces.;

• <conio.h> allows console input/output operations

conio.h (console input output header) example.

getch Reads a character directly from the console without buffer

putch Writes a character directly to the console

cscanf Reads formatted values directly from the console

cprintf Formats values and writes them directly to the console.

• Defines numeric conversion functions, pseudo-random numbers generation functions,
memory allocation, process control functions;

• <stdlib.h> allows standard input/output operations

stdlib.h (standard library header) example.

system Execute system command (function)

rand Generate random number (function)

abort Abort current process (function)

52

• Block {…}

– Text surrounded by braces {...}.

– See line no.7 and no.12 above.

• Brace { }

– A left brace, {, begins the body of every function (line 7). A corresponding

right brace ends each function (line 11).

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {
8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended successfully */
11
12 } // end function main.

Welcome to C!

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {
8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended successfully */
11
12 } // end function main.

Welcome to C!

• return 0; statement

– in line no.10, there are the statement return 0; which is indicate that the

function is successful normally terminated.

– Why return 0, bcoz main function should return integer data type.

– void main() does no need to return 0.

53

• Comments

- Text surrounded by /* and */ is ignored by computer, also by //. See line

no.1 & 2

- Used to describe program

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {
8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended successfully */
11
12 } // end function main.

Welcome to C!

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {
8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended successfully */
11
12 } // end function main.

Welcome to C!

54

Understand Operators and Expressions

• Operators are symbols which take one or more operands or expressions and perform
arithmetic or logical computations.

• Types of operators available in C are as follows:

• Arithmetic

• Assignment

• relational

• Logical

• Boolean operator/Bitwise

Y = A + B × 2

variable(operand)

constant

expression

OPERATOR

• Arithmetic Operator

• All the basic arithmetic operations can be carried out in C.

• Both unary and binary operations are available in C language.
*Unary operations operate on a singe operand, therefore the number 5 when
operated by unary – will have the value –5.

55

Y = mX² + d ÷ m ×k Y =m*X*X+d/m*k;

algebraic expression c expression

s = s³ + d - w² s=s*s*s+d-w*w

v = ½V + a × t v=1/2*V+a*t

E = mc² E=m*c*c

Z = kD - bV² + m Z=k*D-b*V*V+m

o = 0.23m – 0.11k² o=0.23*m-0.11*k*k

Area = ½(P × L) Area=1/2*(P*L)

Formula C Expression

Questions
Write the C expression from the algebraic expression

+a Positive a -b Negative b

int a;

a=10;

m=a;

int b;

b=10;

m=-b;

• Arithmetic Operator

• Both unary and binary operations are available in C.

56

• Arithmetic Operator

• Both unary and binary operations are available in C

a++

a+1

int a;

a=10;

m=a++;

++a

postfix

prefix

m=11 is the answer

a--

a-1

int a;

a=10;

m=a--;

--a

postfix

prefix

m=9 is the answer

Arithmetic Operational

57

• Relational Operator

• C supports the following relational operators.

• Often it is required to compare the relationship between operands and bring out a
decision and program accordingly.

• Example, we might make a decision in a program, for example, to determine if a
person’s grade on an exam is greater than or equal to 60 and if it is to print the
message “Congratulations! You passed.”

Questions
Write the C expression from the algebraic expression

X is greater than 46 X>46

algebraic expression c expression

y is lower than 423 Y<423

221 is lower than m 221<m

A is greater than or equal to 257

A is greater than or equal to s

W is not equal to K W!=K

W!=K

W!=K

Relational Operator

58

• Logical Operator

• So far we have studied only simple conditions, such as counter <= 10, total > 1000,
and number != Value.

• C provides logical operators that may be used to form more complex conditions by
combining simple conditions.

• The logical operators are

• && (logical AND),

• || (logical OR) and

• ! (logical NOT also called logical negation).

• Logical Operator (&& - and)

• Variable1&&Variable2

Questions
Write the C expression from the algebraic expression and result

0 and with 1 0&&1

algebraic expression c expression

0 and with 0 0&&0

1 and with 1 1&&1

0 (false)

result

0 (false)

1 (true)

0 and with 124 0&&124 0 (false)

12 and with 111 12&&111 1 (true)

59

• Logical Operator (|| - or)

• Variable1||Variable2

0 or with 1 0||1

algebraic expression c expression

0 or with 0 0||0

1 or with 1 1||1

1 (true)

result

0 (false)

1 (true)

0 or with 124 0||124 1 (true)

12 or with 111 12||111 1 (true)

Questions
Write the C expression from the algebraic expression and result

• Logical Operator(Bitwise) (! - not)

• !(Variable1)

not 0 !0

algebraic expression c expression

not 1 !1

not (1 or 1) !(1||1)

1 (true)

result

0 (false)

0 (false)

not (0 &&124) !(0&&124) 1 (true)

(not 12) or 111 (!12)||111 1 (true)

60

Logical Operational

• Boolean Operator(Bitwise)

• The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (^), and
bitwise-inclusive-OR (|) operations.

• & - The bitwise-AND operator compares each bit of its first operand to the
corresponding bit of its second operand. If both bits are 1, the corresponding result
bit is set to 1. Otherwise, the corresponding result bit is set to 0.

0 0 1 1 1 0 1 1

0 1 0 1 0 1 1 1&

0 0 0 1 0 0 1 1

• Boolean Operator(Bitwise)

• The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (^), and bitwise-
inclusive-OR (|) operations.

• ^ - The bitwise-exclusive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If one bit is 0 and the other bit is 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result bit is set to 0.

0 0 1 1 1 0 1 1

0 1 0 1 0 1 1 1^

0 1 1 0 1 1 0 0

61

• Boolean Operator(Bitwise)

• The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (^), and bitwise-
inclusive-OR (|) operations.

• |- The bitwise-inclusive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If either bit is 1, the corresponding result bit is
set to 1. Otherwise, the corresponding result bit is set to 0.

0 0 1 1 1 0 1 1

0 1 0 1 0 1 1 1|

0 1 1 1 1 1 1 1

Example

62

• Exercise . Bitwise ~ & | ^

4 & 3

C Expression

4A & 2B (assume in hex)

2 | 4

0

result

A (hex)

6

2 & 6 | 3 3

(8^3) & 6 2

(9 ^ 3) | (3 & 6) 10

2 & 3 & 5 | 10 (assume in decimal) 10

4 + 4 & 4 0

5 - 2 & 5 1

Boolean(Bitwise) Operational

63

Left shift

• Assignment

• often just called the "assignment operator", is a special case of assignment
operator where the source (right-hand side) and destination (left-hand side) are of
the same class type.

eg: a=a+b; mean a(new) = a(old) + b;

int a,b;

a=3; b=5; 

a=a+b; 

a=a+b; a+=b;

d=d-b; d-=b;

e=e×b; e*=b

m=m÷k; m/=k

64

Compound(assignment) Operational

Operator name syntax meaning

Addition assignment a+=b a=a+b

Subtraction assignment a-=b a=a-b

Multiplication assignment a*=b a=a*b

Division assignment a/=b a=a/b

Modulo assignment a%=b a=a%b

Bitwise AND assignment a&=b a=a&b

Bitwise OR assignment a|=b a=a|b

Bitwise XOR assignment a^=b a=a^b

Bitwise left shift assignment a<<=b a=a<<b

Bitwise right shift assignment a>>=b a=a>>b

Questions
Write the answers for each expression

Question Answer

i=3*5+5%3; 17

i=3+5*2%3; 4

i=4+5%3*3; 10

i=6%2*5%3; 0

i=4>2; 1

i=4>2+5; 0

i=4>=4*0%2; 1

i=4!=3; 1

65

Hierarchy Of Operator

Example

66

Questions
Write the answers for each expression

Question Answer

I=3%4+6-8*(2+22)||3;

I=13&(5+9*2%4-!4);

I=4+3*2-5%6<=19%10;

i=6%2*5%3;

Programming Example

Prompt number

0 to 100

67

Programming Example

Modify the program to print as follow

0 2 4 6……………

...........200

Modify the program to print as follow

0

2

4

6

:

:

:

200

Modify the program to print as follow

0 0.1 0.2 0.3……

...........20

Exercise
Modify the programming above

68

Programming Example

Modify the program to print as follow

No. x2 x3

0 0 0

1 2 3

2 4 6

3 6 9

4 8 12

5 10 15

: : :

: : :

20 40 60

Exercise
Modify the programming above

extra notes

• In this example, if x is equal to either w, y, or z, the second argument to the

printf function evaluates to true and the value 1 is printed. Otherwise, it

evaluates to false and the value 0 is printed. As soon as one of the

conditions evaluates to true, evaluation ceases.

69

• The following examples illustrate the logical operators:

• In this example, the printf function is called to print a message if x is less than

y and y is less than z. If x is greater than y, the second operand (y < z) is not

evaluated and nothing is printed.

extra notes

Exercises
Observe what the output for each programming

Try make a program to
key-in and view number:
a) 23 & 24
b) 33, 155 & 112

hint.: just add more
variable

Eg: int a;
int b;
int c;

70

Program to add 2 integers

have 3 variable,

a for first number..

b for second number..

..and…..

c for the total..

Exercises
Observe what the output for each programming

Observe what the output..

Try make a program to key-in and add this number:
a) 23 & 24
b) 33, 155 & 112

hint.: just add more variable
Eg: int a;

int b;
int c;

Create C Program..

71

Exercises
Create C Program to display 1 to 100

Exercises
• Implement mathematical calculations in simple C program
• Implement mathematical calculations using the function in the main

function

72

CHAPTER
3

Selection
Statements

IF statements
- IF statements
- Nested IF statements

IF-ELSE statement

SWITCH statements

Control Structure

• C provides several programs for control statement and lets to execute the instructions
in a non-sequential tasks (skipping a block of instructions or execute a block of
instructions repetitively.

• 4 basic control structures:-

• sequence structure

• selection structure

• repetition structure (iteration/ looping)

• Jumps statements

A. Sequence Structure

• the simplest of all the structures.
• The program instructions are executed one by one, starting from the first instruction and

ending in the last instruction as in the program segment.

Example :
x = 5; (S1)

y = 10; (S2)

Total = x * y; (S3)

printf(“ Total =%d”, Total); (S4)

S1 S2 S3 S4
Entry Exit

B. Selection Structure

• The selection structure allows to be executed non-sequentially.
• It allows the comparison of two expressions, and based on the comparison, to select a

certain course of action.

• There are three types of selection statements:

• if statement

• either performs (selects) an action if a condition is true or skips the action if
the condition is false.

• if-else statement

• performs an action if a condition is true and performs a different action if the
condition is false.

• switch statement.

• performs one of many different actions depending on the value of an
expression

75

Selection Structure (if)

This is used to decide whether to do something at a special point, or to decide between two
courses of action.

if selection statement : “For example, suppose the passing grade on an exam is 60.”

• Pseudo-code:

• C syntax:

• Flowchart:

An example of if statement positive and negative number:

76

../../../Project.New/C/Chapter3/Chap3.5_if.c
../../../../Project.New/C/Exercise_16_if_if.c
../../../../Project.New/C/Exercise_16_if_if.c

Another example of if statement: compare 2 numbers

Another example of if statement: check ur gender

77

../../../../Project.New/C/Exercise_16_if_if_b.c
../../../../Project.New/C/Exercise_16_if_if_b.c

Selection Structure (if…else)

• If-else selection statement : “For example, suppose the passing grade on an exam is 60.”

• Pseudo-code:

• C syntax:

• Flowchart:

An example of if…else statement positive and negative number

78

../../../Project.New/C/Chapter3/Chap3.6_if_else.c

Selection Structure (switch…case)

• switch selection statement :

• C syntax:

switch (condition)

{

case 1 : statement1; break;

case 2 : statement2; break;

default: statement3;

}

• Flowchart:

79

../../../Project.New/C/Chapter4/Chap4.7_switch.c

Selection Structure (switch…case)

An example of switch: [to switch a color]

Inform the user

store number in “color”

Choose between
number 1,2,3 only!!

Exercise

Create a program if you;

enter number 1, it will display Sunday

enter number 2, it will display Monday

enter number 3, it will display Tuesday

enter number 4, it will display Wednesday

enter number 5, it will display Thursday

enter number 6, it will display Friday

enter number 7, it will display Saturday

80

../../../../Project.New/C/Exercise_20_switch_case.c
../../../../Project.New/C/Exercise_20_switch_case.c

Selection Structure (switch…case)

An example of switch: to check a grade!

Inform the user

store character in “grade”

Choose between
character A,B,C,D,F
only!!

• C programming is case sensitive, so the letter ‘A’ and ‘a’ for case is different. So, to
choice both, even lower case of upper case, just modify the coding by adding both
cases like example:

81

../../../../Project.New/C/Exercise_20_switch_case_b.c
../../../../Project.New/C/Exercise_20_switch_case_b.c

Nested if…else statements

• Nested if…else statements test for multiple cases by placing if…else statements inside
if…else statements.

• For example, the following pseudocode statement will print A for exam grades greater
than or equal to 90, B for grades greater than or equal to 80, C for grades greater than or
equal to 70, D for grades greater than or equal to 60, and F for all other grades.

This pseudocode may be written in C as

• C syntax can be simply as above:

82

Example:

if (condition)

else if (condition)

else if (condition)

else if (condition)

else

Depend on how

Many condition

You want to use

• C syntax:

83

• Flowchart:

Syntax:
if(condition1)

{

statement1

}

else if(condition2)

{

statement2

}

else if(condition3)

{

statement3

}

else

statement4

84

Comparison if..else & switch..case

BASIS FOR

COMPARISON
IF-ELSE SWITCH

Basic Which statement will be executed

depend upon the output of the

expression inside if statement.

Which statement will be executed is

decided by user.

Expression if-else statement uses multiple

statement for multiple choices.

switch statement uses single

expression for multiple choices.

Testing if-else statement test for equality

as well as for logical expression.

switch statement test only for

equality.

Evaluation if statement evaluates integer,

character, pointer or floating-point

type or boolean type.

switch statement evaluates only

character or integer value.

Sequence of

Execution

Either if statement will be

executed or else statement is

executed.

switch statement execute one case

after another till a break statement is

appeared or the end of switch

statement is reached.

Default

Execution

If the condition inside if

statements is false, then by default

the else statement is executed if

created.

If the condition inside switch

statements does not match with any

of cases, for that instance the default

statements is executed if created.

Editing It is difficult to edit the if-else

statement, if the nested if-else

statement is used.

It is easy to edit switch cases as, they

are recognized easily.

85

if Nested if else

Comparison if-statement and Nested if-else-statement

86

switch case

Nested if else

Comparison if-statement and Nested if-else-statement

87

CHAPTER
4

Looping
Statements

FOR statements
- FOR statements
- Nested FOR statements

WHILE statement

DO-WHILE statements

Definition of looping or repetition

• Loops provide a way to repeat commands and control how many times they are repeated.

• C provides three types of looping structures in the form of statements.

• for statement

• while statement

• do…while statement

• The main idea of a loop is to repeat an action or a series of actions.

An action or a series of actions

The concept of a loop

• But, when to stop looping?

• In the following flowchart, the action is executed over and over again. It never stop – This is
called infinite loop

• Solution – put a condition to tell the loop either continue looping or stop.

• A loop has two parts – body and condition

• Body – a statement or a block of statements that
will be repeated.

• Condition – is used to control the iteration – either
to continue or stop iterating.

Body

Condition
True

False

• Two forms of loop:

• Pretest loop

• post-test loop

90

• Pretest loop

- the condition is tested
first, before we start
executing the body.

- The body is executed if
the condition is true.

- After executing the body,
the loop repeats

• Post-test loop

- the condition is tested later, after
executing the body.

- If the condition is true, the loop
repeats, otherwise it terminates.

- The body is always executed at
least once.

Body

Condition
True

FalseThe iterating
part must be
True

Post-test loop

Body

Condition

True

False

Here.
Must be
True

Pretest loop

Initialization

Condition

True

False

Body

Updating

• Initialization

- is used to prepare a loop before it can start –
usually, here we initialize the condition.

- The initialization must be written outside of
the loop – before the first execution of the
body.

• Updating

- is used to update the condition.

- If the condition is not updated, it always true
=> the loop always repeats- an infinite loop.

- The updating part is written inside the loop –
it is actually a part of the body.

Parts of a loop

91

Loop statements

• C provides three loop statements:

Loop
statements

while

(pretest loop)

for

(pretest loop)

do…while

(post-test loop)

Definition

• while loop statement

• A while statement is like a repeating if statement.

• Like an if statement, if the test condition is true: the statements get executed.

• The difference is that after the statements have been executed, the test condition is
checked again.

• If it is still true the statements get executed again.

• This cycle repeats until the test condition evaluates to false.

• do…while loop statement

• do ... while is just like a while loop except that the test condition is checked at the
end of the loop rather than the start.

• This has the effect that the content of the loop are always executed at least once.

• for loop statement

• for loop is very flexible based on the combination of the three expression is used.

• The counter can be not only counted up but also counted down. You can count by
twos, threes and so on. You can count by not only number but also character.

• Beside the body and condition, a loop may have two other parts – Initialization and
Updating

Initialization

Condition

True

False

Body

Updating

Pretest loop
• for
• while

92

Post-test loop
• do…while Initialization

ConditionTrue

False

Body

Updating

• Example: These flowcharts print numbers 10 down to 1

93

Comparison

• while :

• while tests a condition at the beginning of the loop

• condition must first be true for the loop to run even once

• do while :

• do/while tests a condition at the end of the loop

• loop will run at least once

• for :

• for facilitates initializing and incrementing the variable that controls the loop

• Especially helpful for:

• Looping for a known number of times

for looping

The C for statement lets you specify the initialization, test, and update operations of a
structured loop in a single statement. The for statement is created as follows:

where:

init_exp: is an expression that is evaluated before the loop is entered.

cond_exp: is an expression that is evaluated before each pass through the loop.

update_exp: is an expression that is evaluated at the end of each pass through the loop, after
the loop body has been executed, and just before looping back to evaluate cond_exp again.

The C for statement lets you specify the initialization, test, and update operations of a
structured loop in a single statement. The for statement is created as follows:

C syntax

94

for looping

• The C for statement lets you specify the initialization, test, and update operations of a
structured loop in a single statement. The for statement is created as follows:

flowchat

Example 1 - Display number 1 to 10

95

../../../../Project.New/C/Exercise_28_for_a.c

Example 2 - Display asterisk

Example 3 - Display asterisk (based on user REQUEST!)

96

../../../../Project.New/C/Exercise_28_for_b.c

Example 4 - Display sin(x)

97

while looping

• The while loop can be used if you don’t know how many times a loop must run
(sometimes) until the condition is met. The statement of while is:

• while loop/repetetion statement : “For example,

• Pseudo-code:

• C syntax:

• Flowchart:

Example 1 – Display 20 to 0. (Decrement numbers)

98

../../../Project.New/C/Chapter3/Chap3.7_while.c
../../../../Project.New/C/Exercise_29_while_a.c

Example 2 – We add 0+1+2+3+4+5+6+…..+100

99

../../../../Project.New/C/Exercise_29_while_b.c

do..while looping

• do..while loop/repetetion statement :

• C syntax:

• Flowchart:

Example 1 - count -10 to 10

100

../../../Project.New/C/Chapter4/Chap4.8_do_while.c

• Difference between while and do while loop

• The do while statement is similar to the while statement except that its
termination condition is at the end of the body of the loop only. Thus, you want to
use a do statement, if you want to perform the body of the loop at least once,
regardless of the condition.

nested for

• A for loop inside another for loop is called nested for loop.

• Syntax of Nested for loop:

for (initialization; condition; increment/decrement)

{

statement(s);

for (initialization; condition; increment/decrement)

{

statement(s);

...

}

...

}

101

nested for

• Example 1: C program to print all the composite numbers from 2 to a certain number
entered by user.

• Example 2: C program to print multiplication table from 1 to 5

Output:

102

• Flowchart for Example 2

103

Jump Statements

BREAK statements

CONTINUE statement

RETURN statements

GOTO statements

Jump statements

• In addition to the sequence, repetition and selection , C also provides jump statements.

• The statements allow program control to be transferred from one part of the program to
another program unconditionally.

• There are four jump statements:

break statement

Break statement – The break statement in C programming language has following two
usage:

• When the break statement is encountered inside a loop, the loop is immediately
terminated and program control resumes at the next statement following the loop.

• It can be used to terminate a case in the switch statement (covered in the previous
chapter).

• It causes a loop to terminate

Example:

for (n=10; n>0; n=n-1)

{

if (n<8) break;

printf(“%d ”,n);

}

Output:

10 9 8

• break statement:

• It performs a one-way transfer of control to another line of code;

• The set of identifier names following a goto has its own name space so the names
do not interfere with other identifiers. Labels cannot be redeclared.

105

../../../../Project.New/C/Exercise_28_for_f.c

continue statement

Continue – The continue statement in C programming language works somewhat like the
break statement. Instead of forcing termination, however, continue forces the next
iteration of the loop to take place, skipping any code in between.

• The continue statement, when executed in a while, for or do…while statement, skips the
remaining statements in the body of that control statement and performs the next
iteration of the loop.

106

continue statement

Example:

for (n=10; n>0; n=n-1)

{

if (n%2==1) continue;

printf(“%d ”,n);

}

Output:

10 8 6 4 2

Continue examples using for statement and while statement :

#include <stdio.h>

void main ()

{

int n;

for (n=10; n>0; n=n-1)

{

if (n%2==1) continue;

printf(“%d ”,n);

}

system (“pause”);

}

#include <stdio.h>

void main ()

{

int n;

n = 10;

while (n>0)

{

printf(“%d ”,n);

if (n%2==1) continue;

n = n –1;

}

system (“pause”);

}

Example:

n = 10;

while (n>0)

{

printf(“%d ”,n);

if (n%2==1) continue;

n = n –1;

}

Output:

10 9 9 9 9 9 …………

The loop then prints number 9
over and over again. It never
stops.

107

continue statement

Example:

n = 10;

while (n>0)

{

printf(“%d ”,n);

if (n%2==1) continue;

n = n –1;

}

Transfer to the
loop condition

start

n=10

n>0

n%2==1

n=n-1

stop

print n

true

true

false

false

108

goto statement

goto - The goto statement is used to alter the normal sequence of program execution by
transferring control to some other part of the program unconditionally. In its general
form, the goto statement is written as goto label;

where the label is an identifier that is used to label the target statement to which the
control is transferred.

• goto statement:

• It performs a one-way transfer of control to another line of code;

• The set of identifier names following a goto has its own name space so the names do
not interfere with other identifiers.

• Labels cannot be redeclared.

109

110

CHAPTER
5

Function

Functions

• A function is a group of statements that together perform a task.

• Every C program has at least one function, which is main(), and most programs can
define additional functions.

• You can divide up your code into separate functions, where each function performs a
specific task.

• A function declaration tells the compiler about a function's name, return type, and
parameters.

• A function definition provides the actual body of the function.

Types of function

• There are two type of function:-

a. Predefined function

b. User-defined function

a) Predefined function

• Predefined functions are functions that have been written and we can use them in our
C statements.

• These functions are also called as 'library functions'. These functions are provided by
system. These functions are stored in library files. Example:-

• scanf()

• printf()

• strcpy

• strlwr

• strcmp

• strlen

• strcat

b) User-defined function

• The functions which are created by user for program are known as 'User defined
functions'.

• Advantages :

• It is easy to use.

• Debugging is more suitable for programs.

• It reduces the size of a program.

• It is easy to understand the actual logic of a program.

• Highly suited in case of large programs.

• By using functions in a program, it is possible to construct modular and
structured programs.

113

User-defined function

114

Three steps in using functions

1. Declare the function:

• Known as function declaration or function prototyping.

• Write a function prototype that specifies:

– the name of the function

– the type of its return value

– its list of arguments and their types

2. Define the function:

• Known as function definition or function implementation.

• Write the block of statements (body) of the function to define processes should be
done by the function.

3. Call the function:

• Known as function call or function invocation.

• Call the name of the function in order to execute it.

Figure : Declaring, calling and defining functions

115

FUNCTIONS

• there are five types of functions and they are:

1. Functions with no arguments and no return values.

2. Functions with arguments and no return values.

3. Functions with arguments and return values.

4. Functions that return multiple values.

5. Functions with no arguments and return values.

116

1. Functions with no arguments and no return value.

#include<stdio.h>

#include<conio.h>

void printline()

{

int i;

printf("\n");

for(i=0;i<30;i++)

{

printf("-");

}

printf("\n");

}

void main()

{

clrscr();

printf("Welcome to function in C");

printline();

printf("Function easy to learn.");

printline();

getch();

}

117

2. Functions with arguments and no return value.

#include<stdio.h>

#include<conio.h>

void add(int x, int y)

{

int result;

result = x+y;

printf("Sum of %d and %d is %d.\n\n",x,y,result);

}

void main()

{

clrscr();

add(30,15);

add(63,49);

add(952,321);

getch();

}

118

3. Functions with arguments and return value.

#include<stdio.h>

#include<conio.h>

int add(int x, int y)

{

int result;

result = x+y;

return(result);

}

void main()

{

int z;

clrscr();

z = add(952,321);

printf("Result %d.\n\n",add(30,55));

printf("Result %d.\n\n",z);

getch();

}

119

4. Functions with no arguments but returns value.

#include<stdio.h>

#include<conio.h>

int send()

{

int no1;

printf("Enter a no : ");

scanf("%d",&no1);

return(no1);

}

void main()

{

int z;

clrscr();

z = send();

printf("\nYou entered : %d.", z);

getch();

}

120

5. Functions that return multiple values.

#include<stdio.h>

#include<conio.h>

void calc(int x, int y, int *add, int *sub)

{

*add = x+y;

*sub = x-y;

}

void main()

{

int a=20, b=11, p,q;

clrscr();

calc(a,b,&p,&q);

printf("Sum = %d, Sub = %d",p,q);

getch();

}

121

Declaring a function

return_type function_name (formal_parameter_list);

• The syntax of a function declaration (formally called prototype) contains:

– The type of the return value of the function

• if the function does not return anything, the type is void

• if return_type is not written the Compiler will assume it as int

– The name of the function

• same rules as for variable naming

– A list of formal parameter made up of its names and its types.

They are enclosed in parentheses

– The prototype must be terminated by a semicolon

• Function prototypes are usually written between the preprocessor directives and main().

Examples of function prototypes

• float avrg(int num1, int num2, int num3);

• Function avrg takes three integers as parameters and returns a floatingpoint
value.

• void mix(double num1, int num2);

• This function receives a double and an integer value as parameters. But, it does
not return any value.

• void greeting(void);

• This function does not receive any parameter and also does not return any value.

• calculate();

• The return type and the formal parameters are not written.

• This function does not receive any parameter. It returns an integer value.

122

Defining a function

• The syntax of a function definition is:

function header

return_type function_name (formal_parameter_list)

{

statements;

return an_expression;

}

function
body

If the return_type is not void, the function must
have a return statement.
But, if the return_type is void, the return statement is optional or just put return;
(without an_expression)

The header is similar to
prototype but no semicolon

Calling a function

• The name of a function is called in order to execute the function.

• A called function receives control from a calling function.

• When the called function completes its task, it returns to the calling function.

• The called function may or may not returns a value to the calling function

Functions that return a value can be used in an expression or as a statement.

Example:

if given function defintion as below:

float avrg(int a, int b, int c)

{

return (a+b+c)/3.0;

}

All function calls below are valid

result = avrg(1,2,3) + avrg(4,5,6); // function calls are

// used in an expression

avrg(1,2,3); // function call is used as a statement

printf(“The average is %.2f”, avrg(1,2,3));

123

void function cannot be used in an expression because it does not return any value. It can
only be used as a statement.

Example:

if given function defintion as below:

void greeting(void)

{

printf("Hello");

return;

}

Function call below would be an error

result = greeting(); // Error! greeting() is a void

function

• Formal parameters are variables that are declared in the header of the function definition

• Actual parameters are the expressions in the calling statement

• When making a function call, the formal and actual parameters must match exactly in type,
order and number.

• The parentheses is compulsory, even when no parameters present. This is the way, how the
compiler knows an identifier either it is a function or a variable.

• Example:

greeting; // Error. greeting is a function.

//So, it must have the ()

// eventhough no parameter present

Figure : void function with parameters

124

Figure : Function that returns a value

Example:

int factorial(int n)

{

if (n>1) return n * factorial(n-1);

return 1;

}

This function calculates the factorial of n,

n! = n x (n-1) x (n-2) x … 2 x 1

At the first statement of the function definition, the function calls itself.

Function that calls itself is known as recursive function

125

return statement

• A function returns a computed value back to the calling function via a return statement.

• A function with a non-void return type must always have a return statement.

• Code after a return statement is never executed.

int square (int n)

{

return 10;

n = n * n;

return n;

}

The following function always returns 10.

This line causes the control
back to the calling function and
ignores the rest of lines.

These two lines are ignored
and never executed

126

Local & global variables

• Local variable is a variable declared inside a function.

– This variable can only be used in the function.

• Global variable is a variable declared outside of any functions.

– This variable can be used anywhere in the program

#include<stdio.h>

void print_number(void);

int p;

void main (void)

{

int q = 5;

printf(“q=%d”, q);

p=10;

print_number();

}

void print_number(void)

{

printf(“%d”,p);

q = q + 5;

}

Example: Local vs. Global

p is declared outside of all
functions. So, it is a global
variable.

q is declared inside the
function main. So, it is a
local
variable to the function.

p can be used anywhere

Error! q can only be used in
the function main, because it
is a local variable

127

#include<stdio.h>

double compute_average (int num1, int num2);

void main (void)

{

double average;

int age1 = 18, age2 = 23;

average = compute_average(age1, age2);

return 0;

}

double average (int num1, int num2)

{

double average;

average = (num1 + num2) / 2.0;

return average;

}

Example: Local vs. Global

Same variable names?!?
--it’s OK; they’re local to
their functions. Compiler treat
them as different variables.

Scope

• Scope determines the area of the program in which an identifier is visible (ie. the identifier
can only be used in that area)

• Remember, identifier can be a variable, constant, function, etc.

• Examples:

– Scope of a local variable : only in the function body where t was declared.

– Scope of a global variable : everywhere in the program.

• Scope that enclosed in { } is called a block.

• Inner block can use identifiers that were declared outside of it.

– eg. Any function can use any global variables.

• But outer block cannot use identifiers that were declared in inner block.

• Any block cannot use any identifier that was declared in other block.

– eg. You cannot use any local variable from a function in another function.

128

Example: Scope of inner and outer block and function

129

Parameter Passing

• To call a function, we write its name and give it some information which are called
parameters.

• Giving information to a function call is called parameter passing.

• You have learnt these:

– formal parameters – parameters that are used in function definition

– actual parameters – parameters that are used in function call

• In order to pass parameters, the actual and formal parameters must match exactly in type,
order and number.

– Eg. If you have defined a function with its formal parameter as an “output parameter”,
you must use the ampersand (&) for its actual parameter when you call the function.
Otherwise you will get a syntax error “Type mismatch”.

• Two types of passing:

– Pass by value

– Pass by reference

Pass by Value

• When a data is passed by value, a copy of the data is created and placed in a local
variable in the called function.

• Pass by value does not cause side effect.

– After the function call completed, the original data remain unchanged.

Figure : Pass by value
130

Pass by Value

• You have been introduced with the term “input parameter”. This type of parameter is
passed using “Pass by Value”.

• When passing an expression, the expression is evaluated first, then the result is passed to
the called function.

Passing expression by value

131

Examples (Pass by Value)

Examples (Pass by Value)

132

Pass by Reference

• Passing by reference is a passing technique that passes the address of a variable instead
of its value.

– That’s why it is also called Pass by Address

• Pass by reference causes side effect to the actual parameters.

– When the called function changes a value, it actually changes the original variable in
the calling function.

• Only variables can be passed using this technique.

• The formal parameter must be a pointer.

Example:

void fun(int *x) // x is a pointer variable

{

// function body

}

• The actual parameter must be an address of a variable.

Example:

int n;

fun(&n); // &n means “address of variable n”

Pass by Reference

133

Pass by Reference

134

Arrays

Concept of an array

• An ordinary variable can only contain a single value.

• An array is a variable that contains a collection of values of the same type. These values
are stored in a sequential location.

• A single value in an array is called an element.

• An index (or a subscript) is a reference of an element

• It is an integer number

• Index 0 refers to the first element

136

Using arrays

• Two things to do when using arrays:

• Declaration and definition of arrays

• Accessing elements in arrays

• for putting values

• for getting values

Declaring and defining Arrays

• Since an array is a variable, it must be declared and defined before it can be used.

• Declaration and definition tell the compiler:

• the name of the array

• the data type of each element

• the number of elements in the array

Syntax:

data_type variable_name[n]; // n = number of elements

137

Declaring and defining Arrays

Like ordinary variables, arrays may also be initialized:

Accessing elements in arrays

• We use an index to access an element from an array.

• The index must be in a valid range

• The following example would be an error – array A has only 2 elements, but we try to
access the third element which is not exist.

int A[2];

A[2] = 100; // this line would an error

• We access an element for two purposes:

• assigning new value into it

• getting its current value

138

Assigning values into elements

Examples:

1. Assigning a new value into the 2nd element of array A.

int A[] = {1,3,5,7};

A[1] = 100;

2. Incrementing the value of 3rd element of array B.

int B[] = {11,23,35,47};

B[2]++;

3. Assigning each element of array C with a value that is twice its index

int C[9];

int i;

for (i=0; i<9; i++)

C[i] = i*2;

4. Assigning each element of array D with a value that is read from the keyboard

int D[5];

int i;

for (i=0; i<5; i++)

scanf(“%d”,&D[i]);

5. The following example would be an error – elements of an array must be
assigned individually.

int E[4];

E = {10,20,30,40}; // this would be an error

// solutions: - assign them individually.

E[0]=10;

E[1]=20;

E[2]=30;

E[3]=40;

139

Getting values from elements

Examples:

1. Assigning variable n with the value of first element of array A.

int A[] = {1,3,5,7};

int n;

n = A[0];

2. Printing the second element of array B

int B[] = {10,30,50,70};

printf(“%d”, B[1]);

3. Assigning the first element of array C with the value of the second element,

int C[] = {11,23,35,47};

C[0] = C[1];

4. Printing all elements of array D

int D[]={1,4,3,6,7,8,9,0,2};

int i;

for (i=0; i<9; i++)

printf(“%d\n”, D[i]);

• Passing an element of an array to a function can be in two forms:

- Pass by value - pass its content:

eg. printf(“%d”, A[2]);

- Pass by reference - pass its address.

eg. scanf(“%d”, &A[2]);

140

Passing the whole array to a function can only be done by using pass by

reference.

- It is actually passes the address of the first element.

Example:

void increase(int x[3])

{ x[0] += 1;

x[1] += 2;

x[2] += 3;

}

void main(void)

{

int A[3]={10,20,30};

increase(A); // or, increase(&A[0]);

}

Summary

Array declaration:

int B [20];

char GRED [10];

[] means array
20 means 20 element/ 20 box
B

array

Array of char only

Reference

[0] 1st element

[N-1] last element 141

assess the initial array

int B[5];

B[5]={26,3,6,107,20};

int B[5]={26,3,6,107,20};

[0] [1] [2] [3] [4]

26 3 6 107 20

• C allows a character array to be represented by a character string rather than a list of
characters, with the null terminating character automatically added to the end. For
example, to store the string "Merkkijono", we would write:

char string[] = "Merkkijono";

OR

char string[] = {'M', 'e', 'r', 'k', 'k', 'i', 'j',

'o', 'n', 'o', '\0'};

String "Merkkijono" stored in memory

To read/print array using looping:

• Read:

for (i=0; i<5; i++)

{

scanf("%d ", &A[i]);

}

• Print:

for (i=0; i<5; i++)

{

printf("%d ", A[i]);

}

142

143

• 1-D array can also be extended to Multi-dimensional Array

• Multi-Dimensional array allows us to handle all these using a single identifier

• Multi-Dimensional Arrays:-

• Two Dimensional ARRAY

• Three Dimensional ARRAY

Multi-Dimensional Arrays

1-D array 2-D array 3-D array

144

Two-Dimensional Arrays

• The two-dimensional array can be defined as an array of
arrays.

• The 2D array is organized as matrices which can be
represented as the collection of rows and columns.

• The two dimensional (2D) array in C programming is also
known as matrix.

• A matrix can be represented as a table of rows and
columns.

• Two-dimensional (2D) arrays are indexed by two subscripts, one for the row and one
for the column.

• Example:

145

INITIALIZATION (2D array)

• Initialized directly in the declaration statement

• int b[2][3] = {51, 52, 53, 54, 55, 56};

• Use braces to separate rows in 2-D arrays.

• int c[4][3] = {{1, 2, 3},

{4, 5, 6},

{7, 8, 9},

{10, 11, 12}};

• int c[][3] = {{1, 2, 3},

{4, 5, 6},

{7, 8, 9},

{10, 11, 12}};

• Implicitly declares the number of rows to be 4.

b[0][0] = 51 b[1][0] = 54
b[0][1] = 52 b[1][1] = 55
b[0][2] = 53 b[1][2] = 55

• Data may be input into two-dimensional arrays using nested for loops interactively or
with data files.

• A nested for loop is used to input elements in a two dimensional array.

• In this way by increasing the index value of the array the elements can be entered in a 2d
array.

PROGRAM: Two-dimensional Array

146

FIGURE: Memory Layout

PROGRAM: Convert Table to One-dimensional Array

147

FIGURE: Passing a Row

FIGURE: Calculate Average of Integers in Array 148

FIGURE: Example of Filled Matrix

PROGRAM: Fill Matrix

149

Three Dimensional (3D) ARRAY in C Language

• A 3D array is essentially an array of arrays of arrays: it's an array or collection of 2D
arrays, and a 2D array is an array of 1D array.

FIGURE: A Three-dimensional Array (3 x 5 x 4)

FIGURE: C View of Three-dimensional Array 150

Declaration and Initialization 3D Array

151

Array using a Loop

152

