

DATA COMMUNICATION AND NETWORKING

ZUBAIDAH ABDUL RAHMAN

KEJURUTERAAN ELEKTRIK

Cetakan Pertama 2021 ©Politeknik Kuala Terengganu

Tidak dibenarkan diterbitkan semula atau ditukar dalam apa jua bentuk dengan cara apa jua sama ada elektronik, mekanikal, fotokopi, rakaman dan sebagainya sebelum mendapat kebenaran bertulis daripada Pengarah Politeknik Kuala Terengganu.

Diterbitkan oleh: Politeknik Kuala Terengganu 20200 Jalan Sultan Ismail Kuala Terengganu, Terengganu. 09-6204100 012-9813880

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Zubaidah Abdul Rahman, 1980-DATA COMMUNICATION AND NETWORKING / ZUBAIDAH ABDUL RAHMAN. Mode of access: Internet eISBN 978-967-2240-24-2

- 1. Data transmission systems.
- 2. Digital communications.
- 3. Computer networks.
- 4. Government publications--Malaysia.
- 5. Electronic books.
- I. Title.

004.6

DEP50033 | DATA COMMUNICATION AND NETWORKING

BASIC CONCEPT OF DATA COMMUNICATION alther to be and alther to be a

CHAPTER 1

PREFACE

XXX

DATA COMMUNICATION AND NETWORKING exposes the student to the principle of data communication and networking. This course covers basic concept of data communication and networking fundamental for a quality data transmission. Students are expose to Open Systems Interconnection (OSI) Model and Network Protocol. Students are also introduced to Local Area Network and public digital network.

COURSE LEARNING OUTCOME

CLO1 : Evaluate the performance of data and computer networks while implementing the knowledge, concepts, technology and terms related to data communication and networking. (C5 , PLO 2)

XXX

XX

CLO2 : Construct a simple LAN and WLAN in accordance to IEEE or TIA/EIA-568-A/B and the related data communication and networking equipment systematically in performing data transmission. (P4 , PLO 5)

CLO3: Demonstrate awareness of data communication and networking standard during practical work sessions. (A3, PLO 8)

vi

TABLE OF CONTENT

	the second state and the second state of the s	
	Preface	iv
	Acknowledgements	V
	Course Learning Outcome	vi
<i>.</i>	Basic data communication system	8
.	Data encoding	10
<i>.</i>	Digital-to-digital encoding	11
<i></i>	Digital-to-analogue modulation	15
<u></u>	Error detection in data transmission	20
	Tutorial	27
	References	30
	Acronyms	31

XXXX

Basic Data Communication System

Definition of Data Communication

Defined as the transmission of digital information between two devices using electronic transmission systems.

Data will be represented either in the form of electrical signals, electromagnetic waves or light.

DTE-Data Terminal Equipment

DTE refers to the interface equipment used at the station (between the host and modem) to adapt the digital signals from the computer and terminals to a suitable form for transmission.

Examples for **DTE**: computer, visual monitor, logic controller unit and store buffer.

DTE and DCE in transmission system

DCE - Data Circuit Equipment

DCE means the equipment that converts digital signals to the analog signals and interfaces the data terminal equipment to the analog transmission medium.

DCE is a modem (modulator / demodulator). It converts binary digital signals to analog signals such as FSK, PSK, and QAM, and vice versa.

Data encoding

Encoding is the process of converting data into a format including:

- Program compiling and execution
- Data transmission, storage and compression/decompression
- Application data processing, such as file conversion

Encoding used to reduce the size of audio and video files.

Return-to-Zero (RZ) encoding

The signal state is determined by the voltage during the first half of each data binary digit. The signal returns to a resting state (called zero) during the second half of each bit. The resting state is usually zero volts, although it does not have to be.

Manchester Encoding

There is **always** a mid-bit transition {which is used as a clocking mechanism}.

The **direction** of the mid-bit transition represents the digital data.

Multiline Transmission-3 Level (MLT-3)

MLT-3 encoding (Multi-Level Transmit) is a line code (a signalling method used in a telecommunication system for transmission purposes) that uses three voltage levels (+V, 0, -V) and three transmission rules to move between the levels.

If the next bit is 0, there is no transition.

If the next bit is 1 and the current level is not 0, the next level is 0.

If the next bit is 1 and the current level is 0, the next level is the opposite of the last nonzero level.

Block Coding : 4B/5B

4B5B maps groups of 4 bits onto groups of 5 bits, with a minimum density of 1 bits in the output.

4B binary data	5B code symbol	
0000	11110	
0000	11110	
0010	10100	
0011	10101	
0100	01010	
0101	01011	
0110	01110	
0111	01111	
1000	10010	
1001	10011	
1010	10100	
1011	10110	
1100	11010	
1101	11011	
1110	11100	
1111	11101	

Digital-to-analogue modulation

Amplitude Shift Keying (ASK)

The strength of the carrier signal is varied to represent binary 1 and 0.

Frequency and phase remains the same.

Highly susceptible to noise interference.

Used up to 1200 bps on voice grade lines, and on optical fiber.

Frequency Shift Keying (FSK)

Frequency of the carrier is varied to represent digital data (binary 0/1)

Peak amplitude and phase remain constant.

Avoid noise interference by looking at frequencies (change of a signal)

and ignoring amplitudes.

)))

Limitations of FSK is the physical capabilities of the carrier.

If and f2 equally offset by equal opposite amounts to the carrier freq.

In MFSK more than 2 freq are used, each signal element represents

	M-ary Encoding
1)))	M-ary is a term derived from the word binary.
1)))	<i>M</i> simply represents a digit that corresponds to the number of conditions, levels, or combinations possible for a given number of binary variables.
3)))	For example, a digital signal with four possible conditions
J)))	(voltage levels, frequencies, phases, and so on) is an M-ary system where M = 4. If there are eight possible conditions, M = 8 and so
	forth.
1)))	The number of bits necessary to produce a given number of conditions is expressed mathematically as
	$N = \log_2 M$
	where $N =$ number of bits necessary
	\dot{N} = number of conditions, levels, or combinations possible with N bits
	Equation can be simplified and rearranged to express the number of
	conditions possible with /V bits as
	2 [№] =M
	For example, with one bit, only $2^1 = 2$ conditions are possible. With two bits, $22 = 4$ conditions are possible, with three bits, $2^3 = 8$
	conditions are possible, and so on.
	47
	1/

	Advantages Of M-ary Encoding
1)))	Bandwidth efficiency increases with M
))))	Send more information at a time
, III.	Mana information is no dead into a symphol op date vates can be
))))	increased
))))	Generally, higher data rates require more power (shorter distances, better SNR) to get good results
	QAM – Quadrature Amplitude Modulation
	Digital/analog modulation
	ASK FSK PSK
	QAM ←
	Quadrature amplitude modulation is a combination of ASK and PSK
	so that a maximum contrast between each signal unit (bit. dibit.
	tribit and so on) is achieved
	18

PSK is limited by the ability of the equipment to distinguish between small differences in phases. Limits the potential data rate.

Quadrature amplitude modulation is a combination of ASK and PSK so that a maximum contrast between each signal unit (bit, dibit, tribit, and so on) is achieved.

	Error detection in data transmission
))))	Networks must be able to transfer data from one device to another
	with acceptable accuracy
III	A system must guarantee that the data received are identical to the
))))	data transmitted.
))))	Data can be corrupted during transmission. Some applications
"	require that errors be detected and corrected.
	Importance Of Error Coding
N	Extra hits are added to the data at the transmitter (redundancy) to
))))	permit error detection or correction at the receiver
))))	Done to prevent the output of erroneous bits despite noise and other
ŕ	Imperfections in the channel
III	Popular error control methods include:
<i>))))</i>	 Parity bits
	 Cyclic Redundancy Checking (CRC)
	20

Types Of Error

Single-bit error

The term single-bit error means that only 1 bit of a given data unit (such as a byte, character, or packet) is changed from 1 to 0 or from 0 to 1

In a single-bit error, only 1 bit in the data unit has changed

Burst error (Multiple-bit error)

The term burst error means that 2 or more bits in the data unit have changed from 1 to 0 or from 0 to 1.

TYPE OF ERROR CONTROL

Cyclic Redundancy Check (CRC)

A cyclic redundancy check or CRC, is a form of data verification used by computer software and networking protocols to ensure there has been no corruption to the data being checked.

CRCs are employed mainly by networking protocols such as TCP/IP to ensure that any data sent across a network has not accidentally changed while in transit to its destination.

k bit block of bits, or message, the transmitter generates an n-bit sequence, known as a frame check sequence (FCS), so that the resulting frame, consisting of k + n bits, is exactly divisible by some predetermined number.

The receiver then divides the incoming frame by that number and, if there is no remainder, assumes there was no error.

To clarify this, we present the procedure in three ways: **modulo 2** *arithmetic*, polynomials, and digital logic.

MODULO 2 ARITHMETIC

Modulo 2 arithmetic uses binary addition with no carries, which is just the exclusive or operation. For example:

	1	1	1	1
ł	1	0	1	0
	0	1	0	1

EXAMPLE :

1. Given

- Message M = 1010001101 (10 bits)
- Pattern *P* = 110101 (6 bits)
- FCS R = to be calculated (5 bits)

2. The message M is multiplied by 25, yielding 101000110100000.

4. The remainder (R = 01110) is added to 2"M to give T = 101000110101110, which is transmitted.

5. If there are no errors, the receiver receives T intact. The received frame is divided by P:

TUTORIAL

	TUTOR	IAL																			
	Questio	n 1																			
1		1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	!
Ν	107																				
	1172																				
Ν	IRZI																				
R	z			-																	
Ν	N anchester				 		 	 	 	 	 	 	 	 	 	-	-		- - - -	 	- - - -
												1 1 1 1	1 1 1 1								
А	MI				 			 	 	1 1 1 1		1 1 1 1	1 1 1	1	1					1	- - - -
																	-		-		
H	IDB3											1	1		1						
Ν	1LT-3																				
								 	 			 	1 1 1 1		1 1 1					 	
	Questio	n 2																			
	a. Sup	pose	you ok li	are iko a	e us Inftor	ing Voi	an Lad	odd d th	pa e na	rity. arity	. V v hití	Vhat 2	t sh	oul	d th	ne b	oina	ry v	vorc		
	b. Sup	pose	you	are	e us	ing	an	eve	n p	arity	y. V	Vhat	t sh	oulo	d th	ne b	oinai	ry v	vorc		
	"10:	10" lo	ok li	ike a	fter	you	u ad	da	bari	ty b	it?			_							
	c. Assu	uming s	eve	en p	arit	y, fi	nd	the	pari	ty k	oit f	or e	each	of	the	fol	lowi	ing	data	1	
	i.	3. 10	010	11																	
	ii.	00	011	00																	
	iii. iv	10 11	000	00 11																	
	10.	11	TOT																EA.		
								20	2										C		
								25	5												

TUTORIAL

Question 3

Encode the bit-pattern 1010000101 using the following encoding schemes :

- 1. ASK
- 2. FSK
- 3. PSK
- 4. 4 QAM (use 2 amplitudes and 2 phases (0° and 180°)

Question 4

Data to be sent is 1010001101 and the generator is 110101. Using Cyclic Redundancy Check (CRC) technique, obtain data to be sent from transmitter to receiver. Meanwhile at the receiver, proved there is no error during the transmission process.

Question 5

Given data m(x) = 101010, g(x) = 1001 and 3 remainder bit = 100.

Apply the CRC (Cyclic Redundancy Check) technique to detect the

error at the receiver.

Question 6

List five line coding schemes discussed in this book.

Question 7

List three different techniques in serial transmission and explain the differences.

REFERENCES

XX

Main reference supporting the course Jerry FitzGerald, Alan Dennis, Alexandra Durcikova (2014). Business Data Communications and Networking. 12th Edition Wiley.

Additional references supporting the course Forouzan, B.A. (2012). *Data Communications and Networking*. 5th Edition. Mc Graw Hill.

Jeffrey S. Beasley, Gary M. Miller (2013). *Modern Electronic Communication*. 10th Edition Pearson/Prentice Hall.

William Stallings (2015). *Data And Computer Communications, International Edition*. 10th Edition. Pearson Education Limited.

William Stallings, Thomas L. Case (2013). *Business Data Communications: International Edition*. 7th Edition. Pearson Education Limited.

Wayne T. (2004). *Electronic Communication Systems: Fundamentals Through Advance.* 6th Edition. Prentice Hall.

30

XXXX

ACRONYMS

the second states	and the second
2B1Q	Two-binary, one-quaternary
4B/5B	Four binary, five binary
ANSI	American National Standards Institute
ASK	Amplitude shift keying
CSMA/CA	Carrier sense multiple access / collision avoidance
CSMA/CD	Carrier sense multiple access / collision
	detection
DCE	Data communications equipment
DNS	Domain Name System
DTE	Data Terminal Equipment
ESS	Extended service set (Wi-Fi group)
FTP	File Transfer Protocol
НТТР	HyperText Transfer Protocol
HTTPS	HyperText Transfer Protocol Secure
IEEE	Institute for Electrical and Electronic Engineers
IP	Internet Protocol
ISP	Internet service provider
ITU-T	International Telecommunications Union
LAN	Local area network
LLC	Logical link control
MAC	Media access control 31

ACRONYMS

and the second states	
MAN	Metropolitan area network
NIC	Network Interface Card
NRZ	Non-return-to-zero
NRZI	Non-return to zero inverted
OSI	Open System Interconnect (joint ISO and ITU standard)
PCM	Pulse-code modulation
PDU	Protocol data unit (such as segment, packet, frame, etc.)
POP3	Post Office Protocol, version 3
PPP	Point-to-point Protocol
RTP	Real-time Transport Protocol
SMTP	Simple Mail Transfer Protocol
SSID	Service set identifier (Wi-Fi)
TCP/IP	Transmission Control Protocol/Internet Protocol
UTP	Unshielded twisted pair
VPN	Virtual private network
WAN	Wide-area network
WEP	Wired Equivalent Privacy
Wi-Fi	Wireless Fidelity
WPA	Wi-Fi Protected Access
WWW	World Wide Web 32

Terbitan

